

Automated detection of cultural heritage in airborne lidar data

Note

CultSearcher operationalisation

Note no. Authors Date

SAMBA/50/19

Øivind Due Trier, Jarle Hamar Reksten

30 December 2019

© Copyright: Norsk Regnesentral

Authors

Øivind Due Trier is senior research scientist at the Norwegian Computing Center, Section for Earth Observation.

Jarle Hamar Reksten is senior research scientist at the Norwegian Computing Center, Section for Earth Observation.

Norsk Regnesentral

Norsk Regnesentral (Norwegian Computing Center, NR) is a private, independent, non-profit foundation established in 1952. NR carries out contract research and development projects in information and communication technology and applied statistical-mathematical modelling. The clients include a broad range of industrial, commercial and public service organisations in the national as well as the international market. Our scientific and technical capabilities are further developed in co-operation with The Research Council of Norway and key customers. The results of our projects may take the form of reports, software, prototypes, and short courses. A proof of the confidence and appreciation our clients have in us is given by the fact that most of our new contracts are signed with previous customers.

Norsk Regnesentral Norwegian Computing Center office address Postboks 114, Blindern NO-0314 Oslo, Norway

Besøksadresse Gaustadalleen 23a

(+47) 22 85 25 00 Telefaks · telefax NO-0373 Oslo, Norway (+47) 22 69 76 60

Telefon · telephone Bankkonto · bank account Internett · internet 8200.01.48888 Org.nr. · enterprise no. NO 952125001 VAT

www.nr.no E-post · e-mail nr@nr.no

Title Automated detection of cultural heritage in airborne lidar data

Authors	Øivind Due Trier, Jarle Hamar Reksten
Quality assurance	Rune Solberg
Date	30 December 2019
Year	2019
Publication number	SAMBA/50/19

Abstract

The goal of this research was to develop automated tools for improving the cultural heritage mapping in Norway, thus enabling detailed mapping of large areas within realistic budgets and time frames.

Preprocessing and detection methods were integrated into a python script that may be called from QGIS or started from the Linux command line. The input was a collection of LAS files, and the output was two ESRI shape files for each object type; centre points in one file and object outlines in another file. The software was installed at the Directorate for Cultural Heritage in Norway (Riksantikvaren).

The best classification performance was 86% correct classification (consumer's accuracy), i.e., how many of the true cultural heritage objects were correctly predicted by the method. This was obtained on a test set of labelled lidar data not seen during training. At the same time, the producer's accuracy was 3%, i.e., how many of the objects predicted by the method were in fact true cultural heritage objects. Thus, the main potential for improvement is in reducing the large number of false predictions, i.e., increasing the producer's accuracy. This should be the focus for future improvements of the detection method.

Keywords	Airborne laser scanning, grave mounds, deer hunting systems, charcoal kilns, deep learning, artificial intelligence
Target group	Researchers, archaeologists
Availability	Open
Project number	220 878 CultSearcher
Research field	Remote sensing, archaeology
Number of pages	157
© Copyright	Norsk Regnesentral

Automated detection of cultural heritage in airborne lidar data

3

4

Table of Content

1	Intro	duction		13	
2	Installation at Riksantikvaren1				
	2.1	How to	run	14	
	2.2	Short d	emo of detection module	22	
	2.3	How to	add cultsearcher as a user script	25	
	2.4	What to	o do if the source code file <code>qgis_gui.py</code> has been changed	26	
	2.5	Directo	ry structure	27	
3	Data	l		28	
	3.1	Subdivi	sion of labelled data into training, validation and test	29	
	3.2	Alterna	tive subdivision	31	
	3.3	Unlabe	lled test data	32	
	3.4	Overvie	ew maps of ALS datasets	32	
		3.4.1	Initial subdivision	32	
		3.4.2	Alternative subdivision	48	
		3.4.3	Unlabelled test data	68	
4	Meth	nods		70	
	4.1	4.1 Preprocessing			
	4.2	Detecti	on	70	
	4.3	Proces	sing chain	72	
5	Run	ning the	source code	72	
	5.1	jocuda		72	
	5.2	Python	3 virtual environment	73	
	5.3	Source	code	73	
		5.3.1	jonrpy	73	
	5.4	How to	run	74	
	5.5	Simple	faster R-CNN	82	
		5.5.1	How to install cuda	83	
		5.5.2	Detection parameters	83	

		5.5.3	Try the demo code	84
		5.5.4	Try the training code	84
		5.5.5	Visdom	85
		5.5.6	Pretrained models	85
		5.5.7	Generate training images	86
		5.5.8	Training of neural network	87
		5.5.9	Code changes to allow zero objects in an image	88
		5.5.10	Running detection on extracted test images	89
		5.5.11	Running detection on large areas	91
		5.5.12	Compute detection statistics	. 91
6	Usef	iul utilitio	9S	92
	6.1	Convers	sion from LAS files to DTM, DSM, hillshade etc	92
	6.2	Convers	sion from ENVI files to Geotiff	92
7	Alto	rnativo n	oural network implementations	٩٨
'	7 1	Python	faster R-CNN	 94
	7.2	Detectr		
	7.3	Mask R	-CNN	
	7.4	Faster I	R-CNN	94
		7 4 1	Installation	
		7.4.2	Pretrained models	
		7.4.3	Data preparation	94
		7.4.4	Running the code	95
•			ŭ	•••
8	Resi	Sults		
	8.1	Results	on small test images	96
	0.0	8.1.1 Decutto		96
	8.2	Results		98
		8.2.1		99
	8.3	Results	on small test areas, corrected image extraction	102
	0.4	8.3.1		103
	8.4	Results	on small test areas, alternative setup	105
		8.4.1	Implementation details	105

6

	8.5 comb	Results pinations.	on small test areas, alternative setup and eight rotation/flip	108
		8.5.1	Implementation details	108
	8.6	Results	on larger areas	111
		8.6.1	Implementation details	113
		8.6.2	Overview maps of ALS test datasets	116
	8.7	Result c	on larger areas, alternative setup	121
	8.8 durin	Result c g training	on larger areas, alternative setup and eight rotation/flip combina	tions 123
		8.8.1	Implementation details	123
	8.9	Results	from new archaeological mapping	126
9	Disc	ussion a	nd conclusions	135
10	Conf	ference p	presentations	137
	10.1 Automated mapping of cultural heritage in Norway from airborne lidar using Faster RCNN			ata 137
		10.1.1	Abstract	137
		10.1.2	Types of cultural heritage	138
		10.1.3	Lidar – light detection and ranging	140
		10.1.4	Background	140
		10.1.5	Challenges	141
		10.1.6	Recent developments	141
		10.1.7	Alternatives for R-CNN	142
		10.1.8	Modifications to code	142
		10.1.9	Examples	143
		10.1.10	Training data	144
		10.1.11	Results	144
		10.1.12	Future work	147
	10.2 RCN	Detectic N. Resul	on of cultural heritage in airborne laser scanning data using Fas ts on Norwegian data	ter 149
		10.2.1	Introduction	149
		10.2.2	Data	149
		10.2.3	Methods	150
		10.2.4	Results	151

	10.3 Automated detection of grave mounds, deer hunting systems and charcos burning platforms from airborne lidar data using faster-RCNN	al 153
11	Newspaper story	154
Acl	knowledgements	155
Rei	ferences	156

List of figures

Figure 1. Lesja 2013 dataset, training subset	
Figure 2. Lesja 2013 dataset, validation subset.	
Figure 3. Lesja 2013 dataset, test subset	
Figure 4. Brumunddal 2016 data set	
Figure 5. Horten 2016 dataset	
Figure 6. Hå Jæren 2017 dataset	
Figure 7. Larvik 2017 dataset, training subset	
Figure 8. Larvik 2017 dataset, validation subset.	
Figure 9. Larvik 2017 dataset, test subset	
Figure 10. Oppdal Vang 2011 dataset	
Figure 11. Sarpsborg 2015 dataset	
Figure 12. Steinkjer 2011 dataset.	
Figure 13. Steinkjer 2017 dataset	
Figure 14. Dovre 2011 dataset	
Figure 15. Dovre 2013 dataset	
Figure 16. Dovre 2017 dataset	41
Figure 17. Dovre Folldal 2018 dataset.	41
Figure 18. Dovre Grimsdalen 2010 dataset	
Figure 19. Nordfron 2012 dataset.	
Figure 20. Nordfron 2013 dataset.	
Figure 21. Nordfron 2017 dataset.	

Figure 22. Nordfron 2018 dataset.	44
Figure 23. Nordfron Olstappen 2010 dataset, training subset	45
Figure 24. Nordfron Olstappen 2010 dataset, validation subset	45
Figure 25. Nordfron Olstappen dataset, test subset.	46
Figure 26. Nordfron Venabu 2018 dataset.	47
Figure 27. Vågå 2018 dataset	47
Figure 28. Lesja 2013 dataset, training subset	48
Figure 29. Lesja 2013 dataset, validation subset.	48
Figure 30. Lesja 2013 dataset, test subset	49
Figure 31. Brumunddal 2016 dataset, validation subset	49
Figure 32. Brumunddal 2016 dataset, test subset	50
Figure 33. Horten 2016 dataset.	50
Figure 34. Hå Jæren 2017 dataset	51
Figure 35. Larvik 2017 dataset, training subset	51
Figure 36. Larvik 2017 dataset, validation subset.	52
Figure 37. Larvik 2017 dataset, test subset	52
Figure 38. Oppdal Vang 2011 dataset.	53
Figure 39. Sarpsborg 2015 dataset, validation subset	53
Figure 40. Sarpsborg 2015 dataset, test subset	54
Figure 41. Steinkjer 2011 dataset.	54
Figure 42. Steinkjer 2017 dataset.	55
Figure 43. Dovre 2011 dataset, training subset	55
Figure 44. Dovre 2011 dataset, validation subset.	56
Figure 45. Dovre 2013 dataset	56
Figure 46. Dovre 2017 dataset	57
Figure 47. Dovre Folldal 2018 dataset.	57
Figure 48. Dovre Grimsdalen 2010 dataset	58
Figure 49. Nordfron 2012 dataset, training subset.	58
Figure 50. Nordfron 2012 dataset, validation subset.	59
Figure 51. Nordfron 2012 dataset, test subset.	59
Figure 52. Nordfron 2013 dataset, training subset.	60
Figure 53. Nordfron 2013 dataset, test subset.	60

Figure 54. Nordfron 2017 dataset, training subset.	61
Figure 55. Nordfron 2017 dataset, validation subset.	61
Figure 56. Nordfron 2017 dataset, test subset	62
Figure 57. Nordfron 2018 dataset, training subset.	62
Figure 58. Nordfron 2018 dataset, validation subset.	63
Figure 59. Nordfron 2018 dataset, test subset	63
Figure 60. Nordfron Olstappen 2010 dataset, training subset.	64
Figure 61. Nordfron Olstappen 2010 dataset, validation subset.	64
Figure 62. Nordfron Olstappen dataset, test subset.	65
Figure 63. Nordfron Venabu 2018 dataset, validation subset	65
Figure 64. Nordfron Venabu 2018 dataset, test subset	66
Figure 65. Vågå 2018 dataset, training subset	66
Figure 66. Vågå 2018 dataset, validation subset	67
Figure 67. Øvre Eiker 2015 dataset	68
Figure 68. Øvre Eiker Flesberg 2017 dataset	68
Figure 69. Øvre Eiker Modum 2017 dataset	69
Figure 70. Predicted grave mound locations.	71
Figure 71. Predicted pitfall trap locations.	71
Figure 72. Predicted charcoal kiln locations.	72
Figure 73. Larvik 2017 dataset, test subset	116
Figure 74. Brumunddal 2016 dataset, test subset, part 1	117
Figure 75. Brumunddal 2016 dataset, test subset, part 2	117
Figure 76. Nordfron Olstappen 2010 dataset, test subset.	118
Figure 77. Dovre 2013 dataset, test subset	118
Figure 78. Dovre 2017 dataset, test subset	119
Figure 79. Dovre Folldal 2018 dataset, test subset	119
Figure 80. Nordfron 2013 dataset, test subset	120
Figure 81. Lesja 2013 dataset, test subset	120
Figure 82. Detected charcoal kiln locations (red circles) for a forested area (pale south of Bingen in Øvre Eiker municipality.	green) 126
Figure 83. Five of the detected charcoal kilns, near Vestby, south of Bingen	127
Figure 84. Cultural heritage locations near Vestby, Øvre Eiker.	127
Figure 85. Details of database record of charcoal kiln	128

10

Figure 86. By zooming out from the detailed map view (Figure 84), the northwestern corner of Øvre Eiker municipality is displayed, with cultural heritage locations (brown symbols)
Figure 87. The map portion of Figure 86, i.e., part 1 of Øvre Eiker municipality 129
Figure 88. Part 2 of Øvre Eiker municipality, i.e., south of part 1
Figure 89. Part 3 of Øvre Eiker municipality, i.e., south of part 2
Figure 90. Part 4 of Øvre Eiker municipality, i.e., south of part 3
Figure 91. Part 5 of Øvre Eiker municipality, i.e., south of part 4
Figure 92. Part 6 of Øvre Eiker municipality, i.e., southeast of part 5
Figure 93. Part 7 of Øvre Eiker municipality, i.e., east of part 1 and part 2 132
Figure 94. Part 8 of Øvre Eiker municipality, i.e., south of part 7
Figure 95. Part 9 of Øvre Eiker municipality, i.e., south of part 8
Figure 96. Part 10 of Øvre Eiker municipality, i.e., south of part 9
Figure 97. Part 11 of Øvre Eiker municipality, i.e., south of part 10, east of part 5 and northeast of part 6
Figure 98. Grave mounds in Norway's largest Viking Age grave field at Vang, Oppdal municipality, Trøndelag County
Figure 99. One of the larger grave mounds at Vang, Oppdal, Trøndelag
Figure 100. Pitfall trap, Oppland County. Photo: Lars Holger Pilø, Oppland County Administration
Figure 101. Charcoal kiln, Lesja, Oppland County 140
Figure 102. A forested area in Larvik municipality, Vestfold County. Left: air photo. Middle: digital surface model from airborne lidar data, first hits. Right: digital terrain model from airborne lidar data, ground hits
Figure 103. Lidar data from Bøkeskogen, Larvik municipality, Vestfold County. Several grave mounds are visible. Left: terrain elevation. Middle: hillshade. Right: local relief model
Figure 104. Lidar data from Omsland, Larvik municipality. Several grave mounds are visible. Left: terrain elevation. Middle: hillshade. Right: local relief model
Figure 105. Lidar data from Nord-Fron municipality, Oppland County. A deer hunting system with pitfall traps is visible. Left: terrain elevation. Middle: hillshade. Right: local relief model
Figure 106. Examples of detected grave mounds (in Norwegian: gravhaug), Larvik municipality, Vestfold County
Figure 107. Examples of detected pitfall traps (in Norwegian: fangstgrop), Nord-Fron municipality, Oppland County

Figure 108. Examples of detected charcoal kilns (in Norwegain: kullmiler), Lesja municipality, Oppland County
Figure 109. Some of the predicted charcoal kilns (red circles) in forested areas (pale green) in Øvre Eiker municipality
Figure 110. Visual inspection of six predicted charcoal kilns (purple circles) in Øvre Eiker municipality. Top: hillshade visualization of DTM. Bottom: Local relief visualization of DTM
Figure 111. While on fieldwork in Øystre Slidre municipality, Oppland County, two archaeologists spotted this road sign at Lidar church
Figure 112. Lidar church is located near Skammestein in Øystre Slidre municipality, between Fagernes and Beitostølen
Figure 113. Predicted grave mound locations
Figure 114. Predicted pitfall trap locations 151
Figure 115. Predicted charcoal kiln locations

1 Introduction

The goal of this research was to develop automated tools for improving the cultural heritage mapping in Norway, thus enabling detailed mapping of large areas within realistic budgets and time frames.

The existing cultural heritage mapping in Norway is incomplete. Some selected areas are mapped well, while the majority of areas only contain chance discoveries, often with bad positional accuracy.

The Norwegian Computing Center has previously developed automated methods for detecting some types of cultural heritage objects from airborne laser scanning (ALS) data (Trier and Pilø 2012; Trier, Zortea and Tonning 2015; Trier, Pilø and Johansen 2015; Trier, Salberg and Pilø 2018; Trier, Cowley and Waldeland, 2019). These have contributed to increasing the number of areas that are mapped well. However, the methods have a number of issues that have prevented them from being used systematically on all available ALS datasets.

All of Norway will soon be covered by ALS data for the purpose of creating a new national elevation model. The Directorate for Cultural Heritage in Norway (Riksantikvaren) wants to use this opportunity to obtain a more complete and accurate mapping of cultural heritage in the landscape. The focus is on Iron Age grave mounds and deer hunting systems, as these are automatically protected by Norwegian law due to their age. The automatic protection by law applies to such monuments even if they are not yet mapped. This is, however, at the risk of the monuments being unintentionally destroyed due to the lack of knowledge of their existence.

The following challenges were identified:

- 1. develop an automated processing chain,
- 2. reduce processing time
- 3. reduce the number of false positives and false negatives
- 4. develop detection methods that may be applied on all Norwegian landscapes.

A recent development in deep neural networks for object detection in natural images is the region-proposing convolutional neural network (R-CNN; Girshick et al., 2014), which may also be used for cultural heritage detection in ALS data. Verschoof-van der Vaart and Lambers (2019) use Faster R-CNN (Ren et al., 2017) to detect prehistoric barrows and Celtic fields in ALS data from the Netherlands.

He et al. (2017) extend Faster R-CNN into Mask R-CNN by providing, for each detected object, an object mask in addition to the bounding box provided by Faster R-CNN.

2 Installation at Riksantikvaren

2.1 How to run

trier@cuda:~\$ cd /opt/nr/cultsearcher/gui

trier@cuda:/opt/nr/cultsearcher/gui\$ qgis

Click 'OK'.

QGIS starts.

×.		Q	GIS 2.18.17 (on cuda)				•	- = ×
Project	Edit View Layer Settings Plugins Vector	Raster Database Web Process	ing Help	1 🗃 🖾 🏹 🚍				
				8 = 22 4				
	Browser Panel 5×							
Vo		Recent Projects						
	Favourites							
[₽] ° ¶	DB2							
() -	PostGIS SpatiaLite							
	ArcGisFeatureServer ArcGisMapServer							
•								
%	🕲 WCS 🐨 WFS							
	- 🐨 WMS							
\ <u>8</u>								
	Lavers Panel & X							
	🗸 🖄 👁 🍸 🏭 🛪 🖬 🖬 🔒							
		Coordinate	🛞 Scale 1:1 000 000 💌 🔒	Magnifier 100%	Rotation 0,0	÷ ⊮ Render	EPSG:4326	Q /

In the menu bar, select 'Processing', 'Toolbox'

1	QGIS 2.18.17 (on c	uda)		+ - E X
Project Edit View Layer Settings Plugins Vector	Raster Database Web Processing Help			
<u> </u>		Ctrl+Alt+T	≣▼╏ ♥│ ■	
]∥./₿~36~3%`商べ₿₿	i de martin de la construction d	Ctrl+Alt+H		
Browser Panel & X	Decent Droit & Options	Ctrl+Alt+C		
	Recent Proje	Ctrl+Alt+R		
Favourites	» Commander	Ctrl+Alt+D		
MSSQL PostGIS				
SpatiaLite				
ArcGisHeatureServer				
₩				
90 WCS				
WMS				
V.				
Layers Panel 6 ×				
I'				
	Coordinate Scale 1:1	000 000 💌 🚆 Magnifier 100%	Rotation 0,0 🕂 🔽 Render	EPSG:4326 Q //

QGIS 2.18.17 (on cuda)							
<u>W</u> eb	Processing Help						
AI	💮 <u>T</u> oolbox	Ctrl+Alt+T	L I				
vol (ahol	🤹 Graphical <u>M</u> odeler	Ctrl+Alt+M					
O	<u> </u>	Ctrl+Alt+H					
roid	🛞 Options	Ctrl+Alt+C					
i oj	🤌 <u>R</u> esults Viewer	Ctrl+Alt+R					
	» <u>C</u> ommander	Ctrl+Alt+D					

The processing toolbox is now displayed on the right hand side.

Project Edit View Laver Settings Plugins Vector	Q Raster Database Web Process	GIS 2.18.17 (on cuda)				• ·	×
		2 . Q - Q - C	ο 🖾 Σ 🛲	5 -			
]∥./⊟•∷ն∗•∷液亩≍⊜目	📗 abc. 💦 🧰 abg. abc. abc. abc	, eeg 🛛 💷 🗍 🌏					
Browser Panel B ×	Recent Projects				Processing Too Search	lbox	Ð×
Image: Second secon					You can add n toolbox, gnab	GR [48 geoalgoi GIS 7 commands io geoalgorithm eoalgorithms [11 [1 geoalgorithms [1 geoalgorithms [1 geoalgorithms [1 geoalgorithms [1 geoalgorithms]]	ithms] (314 7 geo s]
	Coordinate	🚿 Scale 1:1 000 000 💌 🔒	Magnifier 100%	Rotation 0,0	Render	EPSG:4326	Q

In the processing toolbox, expand 'scripts' by clicking on the '+'. Also expand 'user scripts'. The script 'cultsearcher' should appear.

X	QGIS 2.18.17 (on cuda)	+ _ O X
Project Edit View Layer Settings Plugins Vector	r Baster Database Web Processing Help	
	▝▓▛₽₽₽₽₽₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	
Browser Panel		Processing Toolbox 🗗 🗙
	Recent Projects	Search
Layers Panel Layers Panel Layers Panel Layers Panel Layers Panel		GRAS GG F (48 geoalgorithms) GRAS GG F commands (314 GRAS GG F commands (314 GRAS GG geoalgorithms) F Gois geoalgorithms (117 geo F bools B Steripts (1 geoalgorithms) F bools Comment
		You can add more algorithms to the toolbox, <u>enable additional</u>
	Coordinate Scale 1:1 000 000 💽 🚆 Magnifier 100% 🚆 Rotation 0.0	Providers. [close] ∴ ▼ Render

If 'cultsearcher' does not appear, then see section 2.3 for an explanaition on how to add 'cultsearcher' as a user script.

Double-click on 'cultsearcher'.

A dialog window appears.

2		QGIS 2.18.17 (on cuda)	↑ _ □ ×
Project Edit View	Layer Settings	Plugins vector Raster Database web Processing Help	
		◈▱◸▱◪◸◸ਸ਼ਸ਼╚▯◙▯∿▧་छ▾◐▾◣▯◙ ◙ Σ ▥▾◸┍▾॥▮	4
<i> . </i> / 🖯 🖓	G 🖓 🖥 🕅	💼 🛰 🖻 📔 🖷 🖑 📲 🧠 🦔 🧠 🖏 🦏 🔛 🛛 🚭	
Browser Panel		ex Pocont Projects	Processing Toolbox 🗗 🗙
	0		Search
Favourit	es		GRASS GIS 7 commands [314
			Models [0 geoalgorithms] ØGIS geoalgorithms [117 geo
MSSQL		Cultsearcher	E Scripts [1 geoalgorithms]
SpatiaLi	ite		B-User scripts
ArcGisFe	eatureServer lapServer	Parameters Log Run as batch proce	iss Cultsearcher
W - OWS		inndatamappe [optional]	
9 WCS	ver (XTZ)	datacattanua	
WFS WMS			
2 /2° -		crs	
80.		EPSG:32633	·
		, I gravhauger	
		🛱 kullmiler	
		₽ fangstgroper	
l			0%
Layers Panel	8. v T T	Run Clo	se
			You can add more algorithms to the
		1	providers. (close)
		Coordinate Scale 1:1 000 000 🖌 🔒 Magnifier 100% 🚔 Rotation 0.0	🗧 🔽 Render 💮 EPSG:4326 🔍

Select a folder containing las or laz files.

Also, type a name for the dataset, and select the object types to detect.

💋 cultsearcher	+ = ×
Parameters Log	Run as batch process
inndatamappe [optional]	
/opt/nr/cultsearcher/lidar/vestfold/larvik_2017/LAS/test_4	
datasettnavn	
test_4	
crs	
EPSG:32633	
🔽 gravhauger	
☐ kullmiler	
☐ [fangstgroper]	
	0%
	Bun Close
	Close

Click 'run'. The processing starts.

1	QQ	5IS 2.18.17 (on cuda)	* _ C ×	
Project Edit View Layer Settings	lugins Vector Raster Database Web Processi	ing Help		
Browser Panel	ex]	1 TY 💴 🍊	Processing Toolbox & X	
	Recent Projects		Search	
Home Favourites Home / Favourites Home / DB2			⊕ GAL/OGR [48 geoalgorithms] ⊕ GRASS GIS 7 commands [314 ⊕ Models [0 geoalgorithms] ⊕ Models [0 geoalgorithms] ⊕ Models [0 geoalgorithms] ⊕ Gis geoalgorithms[117 geo ⊕ Scripts [0 geoalgorithms]	
MSSQL PostGIS	×	cultsearcher		+ • ×
SpatiaLite ArcGisFeatureServer	Parameters Log			Run as batch process
ArcGisMapServer	DEBLIG-iopr productine prodine rup	ocs running, warding.		
Tile Server (XYZ)	DEBUG:jonr.productline.prodline:No products			
WFS	INFO:jonr.productline.prodline:Creating director	y: /opt/nr/cultsearcher/detection/work/temp		
	DEBUG:jonr.productline.prodine:/opt/nr/cultsea	rcher/detection/work/test_4/conf/las2dem_output.json		
80	INFO:jonr.productline.prodline:Apply test_4.las2 INFO:jonr.productline.executor:Apply: python las	dem s2dem.py /opt/nr/cultsearcher/detection/work/test_4/conf/la	ns2dem_output.json /opt/nr/cultsearcher/detection/work/test_4	/conf/las2dem_input.json
	DEBUG:jonr.productline.executor:Wakup DEBUG:jonr.productline.executor:Execute: pythe	on las2dem.py /opt/nr/cultsearcher/detection/work/test_4/c	onf/las2dem_output.json	
	/opt/nr/cultsearcher/detection/work/test_4/conf/ DEBUG:jonr.productline.executor:[localhost] No	las2dem_input.json procs: 1		
	DEBUG: jonr.productline.executor: [localhost] No 2019-04-25 11:29:51 010: INEO: or las2dem: Loa	queued: 0 ding file ROIs		
	2019-04-25 11:29:51,075:INFO:nr.las2dem: /opl	t/nr/cultsearcher/lidar/vestfold/larvik_2017/LAS/test_4/33-1-	456-115-52.las	
	2019-04-25 11:29:51,450:INFO:nr.las2dem: /op 2019-04-25 11:29:51,703:INFO:nr.las2dem: /op	t/nr/cultsearcher/lidar/vestfold/larvik_2017/LAS/test_4/33-1-	456-115-52.las	
	2019-04-25 11:29:52,063:INFO:nr.las2dem: /opt 2019-04-25 11:29:52,358:INFO:nr.las2dem: Pro	t/nr/cultsearcher/lidar/vestfold/larvik_2017/LAS/test_4/33-1- cessing /opt/nr/cultsearcher/lidar/vestfold/larvik_2017/LAS/t	456-115-63.las :est_4/33-1-456-115-52.las	
	2019-04-25 11:29:52,420:INFO:nr.las2dem: Add 2019-04-25 11:29:52,886:INFO:nr.las2dem: Add	l points from /opt/nr/cultsearcher/lidar/vestfold/larvik_2017/ l points from /opt/nr/cultsearcher/lidar/vestfold/larvik_2017/	/LAS/test_4/33-1-456-115-52.las /LAS/test_4/33-1-456-115-53.las	
	2019-04-25 11:29:53,200:INFO:nr.las2dem: Add	points from /opt/nr/cultsearcher/lidar/vestfold/larvik_2017/	/LAS/test_4/33-1-456-115-62.las	_
	2019-04-25 11:29:53.646:INFO:nr.las2dem: Add I	points from /opt/nr/cultsearcher/lidar/vestfold/larvik 2017/L	AS/test 4/33-1-456-115-63.las	
Layers Panel				Run Close
			You can add more algorithms to the	
			toolbox, enable additional	
	Coordinate	🛞 Scale 1:1 000 000 💌 🔒 Magnifier 100% 🚊 I	Rotation 0.0 🚆 🔽 Render 💮 EPSG:4326 🔍	

The conversion from las (or laz) files to raster files is quite slow. The remaining processing steps are faster.

When the processing has finished, predicted locations for cultural heritage objects are displayed as vector layers. There is one centre point layer and one outline polygon layer for each object type. The raster background layer is a local relief model (LRM).

2.2 Short demo of detection module

In order to quickly visualise the detection capabilities of the neural network, here is a short demo that compares detection results with the image annotations. The demo runs on the test images, i.e., images that have not been used in training of the neural network parameters.

```
trier@cuda:/opt/nr/cultsearcher$ cd
trier@cuda:~$ cd /opt/nr/cultsearcher
trier@cuda:/opt/nr/cultsearcher$ source .env/bin/activate
(.env) trier@cuda:/opt/nr/cultsearcher$ cd simple-faster-rcnn-
pytorch-master
(.env) trier@cuda:/opt/nr/cultsearcher/simple-faster-rcnn-
pytorch-master$ python demo_2_test.py
```

Here are the same commands without the leading prompts:

cd

cd /opt/nr/cultsearcher

source .env/bin/activate

cd simple-faster-rcnn-pytorch-master

python demo 2 test.py

Note: there is a Boolean variable, <code>visualize_each_image</code>, in the source code. Make sure that <code>visualize_each_image</code> is set to <code>True</code> if you want to visualize each image, as shown in the figures below. However, if you want to quantify how well the detection module works on the test data, set it to <code>False</code>.

The demo shows one image with predicted object locations.

Close the window by clicking the 'x' in the upper right corner

The demo shows the same image with the presumed correct object locations.

Close the window, and the next image appears with predicted object locations.

2.3 How to add cultsearcher as a user script

Follow the steps shown in the figures below to add <code>qgis_gui.py</code> as a user script.

In the processing toolbox, double-click on 'add script from file'.

In the dialog box that appears, select qgis_gui.py and click 'open'.

Automated detection of cultural heritage in airborne lidar data

Ø	Script files					+ = ×
Look in:	🚞 /opt/nr/cultsearcher/gui	•	G	Э	0	🔀 ☷ 🗏
Compute	er qgis_gui.py					
File <u>n</u> ame:	qgis_gui.py					<u>O</u> pen
Files of type:	Script files (*.py *.PY)				•	Cancel

The script 'cultsearcher' now appears in the processing toolbox:

2.4 What to do if the source code file qgis_gui.py has been changed

If the source code in the file <code>qgis_gui.py</code> has been changed, then the script must be deleted from QGIS and then added again.

Right-click on 'cultsearcher' and select 'delete script'.

Then add the script again as described above.

2.5 Directory structure

Source code, input data and processing results are located in various subfolders under /opt/nr/cultsearcher/ as follows.

/opt/nr/cultsearcher/lidar/ contains LAS files which are used as input data.

/opt/nr/cultsearcher/gui/ contains the QGIS user script qgis gui.py.

/opt/nr/cultsearcher/detection/results/ contains processing results.
There is one subfolder for each dataset. For each dataset, there is one subfolder
detections with ESRI shape files, and one subfolder lrm with raster TIFF files.

/opt/nr/cultsearcher/detection/work/ contains intermediate processing
results. These may be deleted to save disk space.

/opt/nr/cultsearcher/simple-faster-rcnn-pytorch-master/ contains
source code.

/opt/nr/cultsearcher/simple-faster-rcnn-pytorchmaster/checkpoints/ contains neural network parameters learned during training.

/opt/nr/cultsearcher/.env/ contains external python packages that have been installed.

/opt/nr/cultsearcher/imgdataset/ contains training, validation and test images. Each image is 600 x 600 pixels in size and has annotations in the form of locations of known cultural heritage objects that are visible in the image.

3 Data

ALS point cloud datasets (Table 1, Table 2) were downloaded from http://hoydedata.no. This internet site provides free access to all ALS data in Norway.

dataset	ALS project name in hoydedata.no	point density	object type
Larvik 2017	NDH Larvik 5pkt 2017	5/m ²	grave mound
Horten 2016	NDH Vestfold 5pkt 2016	5/m²	grave mound
Hå Jæren 2017	NDH Jæren-Randaberg-Sola 5pkt 2017	5/m²	grave mound
Oppdal Vang 2011	Oppdal 12pkt 2011	12/m ²	grave mound
Sarpsborg 2015	NDH Østfold 5 pkt 2015	5/m²	grave mound
Steinkjer 2011	Steinkjer 2011	1/m²	grave mound
Steinkjer 2017	NDH Steinkjer 5pkt 2017	5/m²	grave mound
Brumunddal 2016	NDH Brumunddal 5pkt 2016	5/m²	grave mound
Olstappen 2010	Olstappen 2010	10/m ²	pitfall trap
Dovre 2011	Dovre 2011	5/m²	pitfall trap
Dovre Grimsdalen 2010	Grimsdalen 2010	12/m ²	pitfall trap
Nordfron 2012	Midt-Gudbrandsdalen 2012	5/m ²	pitfall trap
Vågå 2018	NDH Vågå-Lom-Skjåk 5pkt 2018	5/m ²	pitfall trap
Nordfron 2017	NDH Ringebu-Fron-Gausdal 5pkt 2017	5/m²	pitfall trap
Nordfron 2018	NDH Ringebu-Fron-Gausdal 5pkt 2018	5/m²	pitfall trap
Nordfron Venabu 2018	NDH Venabu 5pkt 2018	5/m²	pitfall trap
Dovre 2013	Nord-Gudbrandsdalen 2013	5/m²	pitfall trap
Dovre 2017	NDH Lesja-Vågå 5pkt 2017	5/m²	pitfall trap
Dovre Folldal 2018	NDH Folldal 5pkt 2018	5/m²	pitfall trap
Nordfron 2013	Nord-Gudbrandsdalen 2013	5/m ²	pitfall trap
Lesja 2013	Nord-Gudbrandsdalen 2013	5/m ²	charcoal kiln

Table 1. ALS datasets used for method development and evaluation.

Table 2. ALS datasets used for new archaeological mapping.

dataset	ALS project name in hoydedata.no	point density
Øvre Eiker 2015	Drammen Eiker 2015	5/m ²
Øvre Eiker Flesberg 2017	NDH Flesberg-Rollag-Øvre Eiker 5pkt 2017	5/m ²
Øvre Eiker Modum 2017	NDH Modum-Sigdal 5pkt 2017	5/m ²

For all the ALS datasets in Table 1, vector maps of known locations of grave mounds, pitfall traps and charcoal kilns were provided as ESRI shape files. The vector maps of grave mounds and pitfall traps were provided by the Directorate for Cultural Heritage in Norway. The vector maps of charcoal kiln locations were provided by Oppland County

Administration. All the vector data were visually checked against the ALS data. Objects with no visual appearance in the ALS data were removed, while obvious omissions were added. For the Oppdal Vang 2011 dataset, small grave mounds were removed from the vector data.

The ALS datasets in Table 2 were selected to cover Øvre Eiker municipality, Buskerud County. Øvre Eiker had few known cultural heritage object locations, but had potential for a large number of previously unknown cultural heritage objects and also local interest in the municipality administration for detailed archaeological mapping. Combined, the three ALS datasets cover the entire area of the municipality.

3.1 Subdivision of labelled data into training, validation and test

The data in Table 1 were split into three parts, named 'training', 'validation', and 'test' (Table 3). The neural network parameters would be learned from the training data iteratively by minimising a loss function. The validation data would be used to select the best set of neural network parameters. The test data would then be used to estimate detection performance on data not seen during training.

On average, 69%, 20% and 11% of the known objects were included in the training, validation and test sets, respectively (Table 4). The splitting followed the below principles:

- For each cultural heritage object type, one ALS dataset contributed to each of the three parts: training, validation and test. The three parts from the same ALS dataset were geographically disjoint, i.e., non-overlapping. This splitting strategy was used on Lesja 2013 (charcoal kilns), Larvik 2017 (grave mounds) and Nordfron Olstappen 2010 (pitfall traps).
- 2. Each of the remaining ALS datasets was assigned to either training, validation or test.
- 3. The known cultural heritage objects should be split into training, validation and test with approximately 70% in training, 20% in validation and 10% in test.

Thus, there was a spread in representativeness of the training and validation sets with respect to the test set.

One purpose of the splitting was to obtain realistic estimates on how the detection performance may be on unlabelled ALS datasets, which is the expected situation when doing detailed archaeological mapping. Another purpose was to obtain a sufficient amount of representative training data for tuning of the parameters of the deep neural network. A third purpose was to reduce the chances of overfitting of the neural network parameters. Overfitting means that the neural network performs well on data that are similar to the training data but performs badly on other data.

Table 3. Subdivision	of ALS data	sets into training	, validation an	d test sets.
			,	

object type	datacot	subset	object	extent	of dataset	in UTM zo	ne 33 N
object type	ualaset	subset	count	west	east	south	north
		training	773	160 800	172 000	6 907 200	6 916 800
charcoal kiln	Lesja 2013	validation	190	154 400	172 000	6 902 400	6 919 600
		test	95	144 800	154 400	6 916 000	6 922 800
grave mound	Brumunddal 2016	test	73	260 000	283 200	6 736 200	6 774 600
grave mound	Horten 2016	training	38	238 400	243 200	6 588 000	6 593 400
grave mound	Hå Jæren 2017	training	84	-44 000	-36 000	6 531 800	6 545 400
		training	288	206 400	220 800	6 547 200	6 563 400
grave mound	Larvik 2017	validation	165	204 800	219 200	6 565 200	6 596 400
		test	57	220 800	226 400	6 552 600	6 565 800
grave mound	Oppdal Vang 2011	training	219	224 690	225 600	6 951 850	6 952 925
grave mound	Sarpsborg 2015	validation	48	274 400	284 600	6 565 200	6 583 800
grave mound	Steinkjer 2011	validation	30	321 600	348 800	7 087 800	7 113 000
grave mound	Steinkjer 2017	validation	44	322 400	345 600	7 097 400	7 119 600
pitfall trap	Dovre 2011	training	650	192 000	218 400	6 885 600	6 915 000
pitfall trap	Dovre 2013	test	29	190 400	204 000	6 878 400	6 897 000
pitfall trap	Dovre 2017	test	15	190 400	196 800	6 882 000	6 897 000
pitfall trap	Dovre Folldal 2018	test	3	233 600	234 400	6 891 600	6 892 200
pitfall trap	Dovre Grimsdalen 2010	training	155	219 200	231 200	6 893 400	6 899 400
pitfall trap	Nordfron 2012	training	80	200 800	226 400	6 833 400	6 848 400
pitfall trap	Nordfron 2013	test	31	191 200	195 200	6 831 000	6 832 200
pitfall trap	Nordfron 2017	validation	16	211 200	224 800	6 831 000	6 842 400
pitfall trap	Nordfron 2018	validation	215	196 800	212 000	6 821 400	6 841 800
	Nordfron Olstannon	training	68	195 470	202 400	6 827 400	6 830 400
pitfall trap		validation	57	200 800	204 800	6 826 400	6 828 000
	2010	test	41	195 200	202 400	6 830 400	6 832 200
pitfall trap	Nordfron Venabu 2018	validation	17	222 400	227 200	6 844 800	6 862 200
pitfall trap	Vågå 2018	training	104	171 200	188 800	6 832 800	6 862 800

Table 4. Summary of ALS data used for neural network training and evaluation.

	number of objects						
object type	training		validation		test		sum
charcoal kiln	773	73 %	190	18 %	95	9%	1058
grave mound	629	60 %	287	27 %	130	12 %	1046
pitfall trap	1057	71%	305	21 %	119	8%	1481
sum	2459	69 %	782	22 %	344	10 %	3585

3.2 Alternative subdivision

Table 5. Alternative subdivision of ALS datasets into training, validation and test sets.

			object	extent of dataset in UTM zone 33 N				
object type	dataset	subset	count	west	east	south	north	
charcoal kiln		training	773	160 750	172 000	6 907 150	6 919 600	
	Lesja 2013	validation	190	154 350	172 000	6 902 500	6 919 600	
		test	95	144 800	154 400	6 916 000	6 922 800	
grave mound	Brumunddal	validation	23	260 000	280 000	6 753 600	6 774 600	
grave mound	2016	test	50	269 600	283 200	6 736 200	6 753 000	
grave mound	Horten 2016	training	38	238 400	243 200	6 588 000	6 593 400	
grave mound	Hå Jæren 2017	validation	84	-44 000	-36 000	6 531 800	6 545 400	
		training	288	206 400	220 800	6 547 800	6 563 400	
grave mound	Larvik 2017	validation	165	205 600	218 400	6 565 800	6 596 400	
		test	57	220 800	226 400	6 553 200	6 565 200	
grave mound	Oppdal Vang	training	219	224 690	225 600	6 951 850	6 952 925	
grave mound	Saracharg 201E	validation	30	274 400	280 000	6 576 000	6 583 800	
grave mound	Salhanold 2012	test	18	276 000	284 800	6 565 200	6 575 400	
grave mound	Steinkjer 2011	test	30	321 600	348 800	7 087 800	7 113 000	
grave mound	Steinkjer 2017	test	44	322 400	345 600	7 097 400	7 119 600	
nitfall tran	Dovro 2011	training	368	199 200	218 400	6 902 400	6 915 000	
pitian trap	D0vie 2011	validation	282	192 000	206 400	6 885 600	6 902 400	
pitfall trap	Dovre 2013	test	29	190 400	204 000	6 878 400	6 897 000	
pitfall trap	Dovre 2017	test	15	190 400	196 800	6 882 000	6 897 000	
pitfall trap	Dovre Folldal 2018	test	3	233 600	234 400	6 891 600	6 892 200	
pitfall trap	Dovre Grims- dalen 2010	test	155	219 200	231 200	6 893 400	6 899 400	
	Nordfron 2012	training	31	202 800	206 400	6 837 000	6 839 400	
pitfall trap		validation	18	221 600	226 400	6 835 800	6 848 400	
		test	31	200 800	219 200	6 833 400	6 840 600	
nitfall tran	Nordfron 2012	training	25	191 200	193 600	6 831 000	6 832 200	
pitian trap	Norumon 2013	test	6	193 600	194 400	6 831 000	6 832 200	
		training	3	220 000	221 600	6 841 800	6 842 400	
pitfall trap	Nordfron 2017	validation	12	220 800	224 800	6 837 600	6 839 400	
		test	1	211 200	212 000	6 831 000	6 831 600	
		training	48	210 400	212 000	6 837 000	6 839 400	
pitfall trap	Nordfrom 2010	validation	152	196 800	200 000	6 825 000	6 827 400	
	N010110112018	test 1	6	208 800	210 400	6 841 200	6 841 800	
		test 2	9	197 600	199 200	6 821 400	6 822 600	
pitfall trap	Nordfron	training	68	195 470	202 400	6 827 400	6 830 400	
	Olstannan 2010	validation	57	200 800	204 800	6 826 400	6 828 000	
	Oistappen 2010	test	41	195 200	202 400	6 830 400	6 832 200	
nitfall trace	Nordfron	validation	10	222 400	224 000	6 861 000	6 862 200	
pitiali trap	Venabu 2018	test	7	224 000	227 200	6 844 800	6 858 600	
nitfall trace	Vộcộ 2019	training	70	184 000	188 800	6 849 650	6 862 800	
pitfall trap	vaga 2018	validation	34	171 200	180 700	6 832 800	6 847 200	

Table 6. Summary of alternative subdivision of ALS data used for neural network training and evaluation.

	number of objects						
object type	training		validation		test		sum
grave mound	508	51 %	235	24 %	253	25 %	996
pitfall trap	784	42 %	699	37 %	387	21 %	1870
charcoal kiln	960	73 %	235	18 %	115	9%	1310
sum	2252	54 %	1169	28 %	755	18 %	4176

3.3 Unlabelled test data

The three unlabeled test data covering Øvre Eiker municipality (Table 2) consisted of 1493 LAS files in total (Table 7).

Table 7. Extent of the ALS datasets covering Øvre Eiker municipality.

datasat	extent o	number			
ualasel	west	east	south	north	of files
Øvre Eiker 2015	537 600	556 000	6 609 600	6 640 800	494
Øvre Eiker Flesberg 2017	535 200	556 800	6 604 800	6 642 600	829
Øvre Eiker Modum 2017	550 400	560 000	6 626 400	6 639 000	170
Combined	535 200	560 000	6 604 800	6 642 600	1 493

3.4 Overview maps of ALS datasets

3.4.1 Initial subdivision

Overview maps of the ALS datasets (Table 3) appear below (Figure 1-Figure 27).

Figure 1. Lesja 2013 dataset, training subset.

Figure 2. Lesja 2013 dataset, validation subset.

Figure 3. Lesja 2013 dataset, test subset.

Figure 4. Brumunddal 2016 data set.

Figure 5. Horten 2016 dataset.

Figure 6. Hå Jæren 2017 dataset.

Figure 7. Larvik 2017 dataset, training subset.

Figure 8. Larvik 2017 dataset, validation subset.

Figure 9. Larvik 2017 dataset, test subset.

Figure 10. Oppdal Vang 2011 dataset.

Figure 11. Sarpsborg 2015 dataset.

Figure 12. Steinkjer 2011 dataset.

Figure 13. Steinkjer 2017 dataset.

Figure 14. Dovre 2011 dataset.

Figure 15. Dovre 2013 dataset.

Figure 16. Dovre 2017 dataset.

Figure 17. Dovre Folldal 2018 dataset.

Figure 18. Dovre Grimsdalen 2010 dataset.

Figure 19. Nordfron 2012 dataset.

Figure 20. Nordfron 2013 dataset.

Figure 21. Nordfron 2017 dataset.

Figure 22. Nordfron 2018 dataset.

Figure 23. Nordfron Olstappen 2010 dataset, training subset.

Figure 24. Nordfron Olstappen 2010 dataset, validation subset.

Figure 25. Nordfron Olstappen dataset, test subset.

Figure 26. Nordfron Venabu 2018 dataset.

Figure 27. Vågå 2018 dataset.

3.4.2 Alternative subdivision

Overview maps of the ALS datasets (Table 5) appear below (Figure 28-Figure 66).

Figure 28. Lesja 2013 dataset, training subset.

Figure 29. Lesja 2013 dataset, validation subset.

Figure 30. Lesja 2013 dataset, test subset.

Figure 31. Brumunddal 2016 dataset, validation subset.

Figure 32. Brumunddal 2016 dataset, test subset.

Figure 33. Horten 2016 dataset.

Figure 34. Hå Jæren 2017 dataset.

Figure 35. Larvik 2017 dataset, training subset.

Figure 36. Larvik 2017 dataset, validation subset.

Figure 37. Larvik 2017 dataset, test subset.

Figure 38. Oppdal Vang 2011 dataset.

Figure 39. Sarpsborg 2015 dataset, validation subset.

Figure 40. Sarpsborg 2015 dataset, test subset.

Figure 41. Steinkjer 2011 dataset.

Figure 42. Steinkjer 2017 dataset.

Figure 43. Dovre 2011 dataset, training subset.

Figure 44. Dovre 2011 dataset, validation subset.

Figure 45. Dovre 2013 dataset.

Figure 46. Dovre 2017 dataset.

Figure 47. Dovre Folldal 2018 dataset.

Figure 48. Dovre Grimsdalen 2010 dataset.

Figure 49. Nordfron 2012 dataset, training subset.

Figure 50. Nordfron 2012 dataset, validation subset.

Figure 51. Nordfron 2012 dataset, test subset.

Figure 52. Nordfron 2013 dataset, training subset.

Figure 53. Nordfron 2013 dataset, test subset.

Figure 54. Nordfron 2017 dataset, training subset.

Figure 55. Nordfron 2017 dataset, validation subset.

Figure 56. Nordfron 2017 dataset, test subset.

Figure 57. Nordfron 2018 dataset, training subset.

Figure 58. Nordfron 2018 dataset, validation subset.

Figure 59. Nordfron 2018 dataset, test subset.

Figure 60. Nordfron Olstappen 2010 dataset, training subset.

Figure 61. Nordfron Olstappen 2010 dataset, validation subset.

Figure 62. Nordfron Olstappen dataset, test subset.

Figure 63. Nordfron Venabu 2018 dataset, validation subset.

Figure 64. Nordfron Venabu 2018 dataset, test subset.

Figure 65. Vågå 2018 dataset, training subset.

NR

Figure 66. Vågå 2018 dataset, validation subset.

3.4.3 Unlabelled test data

Overview maps of the ALS datasets (Table 7) appear below (Figure 67-Figure 69).

Figure 67. Øvre Eiker 2015 dataset.

Figure 68. Øvre Eiker Flesberg 2017 dataset.

Figure 69. Øvre Eiker Modum 2017 dataset.

4 Methods

4.1 Preprocessing

The ALS point cloud data were converted to a digital terrain model (DTM) with 0.25 m pixel spacing. The DTM was converted to a simplified local relief model (LRM) by subtracting a smoothed version of the DTM. The LRM enhances local elevation differences while suppressing the general landscape topography (Hesse 2010). Thus, cultural heritage objects including grave mounds, pitfall traps and charcoal kilns may be visible.

For each cultural heritage object in the vector data, a 150 m × 150 m image was extracted from the LRM. The object's position within the subimage was selected at random. This was done in order to prevent the deep neural network from always predicting the object in the image centre. All cultural heritage objects within the subimage were included in the image annotation. Thus, each image contained one or more cultural heritage objects clearly visible.

4.2 Detection

For detection, the python code library *simple faster R-CNN* was downloaded from <u>https://github.com/chenyuntc/simple-faster-rcnn-pytorch</u>. For each detected object the R-CNN predicts a bounding box, a class label and a score value in the range 0.0 - 1.0. A few modifications had to be done:

- 1. The list of class labels was changed to match the class labels used in the image annotations.
- 2. Training was done on annotated LRM images containing cultural heritage objects.
- 3. The downloaded code crashed if there were no detected objects within an image. Thus, if-tests had to be added.

When these changes were made, the python code predicted the location and sizes of grave mounds (Figure 70), pitfall traps (Figure 71) and charcoal kilns (Figure 72) in LRM images of size 600 × 600 pixels.

Figure 70. Predicted grave mound locations.

Figure 71. Predicted pitfall trap locations.

Figure 72. Predicted charcoal kiln locations.

4.3 Processing chain

The preprocessing and detection methods were integrated into a python script that may be called from QGIS or started from the Linux command line. The input was a collection of LAS files, and the output was two ESRI shape files for each object type; centre points in one file and object outlines in another file. Each object outline was obtained by converting the predicted bounding box to a circle.

5 Running the source code

5.1 jocuda

The machine jocuda has a GPU.

ssh jocuda

To mount a disk from the regular file system:

mkdir jodata2

sshfs -o uid=1000,gid=1000 trier@jo2.ad.nr.no:/nr/samba/jodata2 ~/jodata2

mkdir pro

sshfs -o uid=1000,gid=1000 trier@jo2.ad.nr.no:/nr/samba/jo/pro ~/pro

mkdir jodata9

sshfs -o uid=1000,gid=1000 trier@jo2.ad.nr.no:/nr/samba/jodata9 ~/jodata9


```
mkdir jodata10
```

sshfs -o uid=1000,gid=1000 trier@jo2.ad.nr.no:/nr/samba/jodata10 ~/jodata10

5.2 Python 3 virtual environment First time:

virtualenv -p python3 .env

Alternatively:

virtualenv -p python2 .env

trier@jocuda1:~/cultsearcher/sfrcnn_p2\$
virtualenv -p /usr/bin/python2.7 .env

Each time:

source .env/bin/activate

To end:

deactivate

5.3 Source code Python source code:

/nr/samba/jo/pro/cultsearcher2018/usr/trier

```
/nr/samba/jo/pro/cultsearcher2018/usr/trier/src/cultsearcher/det
ectionline
```

/nr/samba/jo/pro/cultsearcher2018/usr/trier/src/cultsearcher/gui

5.3.1 jonrpy To install jonrpy:

```
(.env)
trier@jo1:/nr/samba/jo/pro/cultsearcher2018/usr/trier/jo1_src/sf
rcnn$ pip install -e jonrpy
```

Automated detection of cultural heritage in airborne lidar data

5.4 How to run

From command line (no line breaks):

```
(.env) trier@jo1:/nr/samba/jo/pro/cultsearcher2018/usr/trier/
jo1_src/sfrcnn/simple-faster-rcnn-pytorch-master$
python -W ignore main.py --utm-zone 33
/nr/samba/jodata10/lidar/oppland/dovre/LAS/folldal_2018_utm33
dovre folldal 2018_test
```

```
python -W ignore main.py --utm-zone 33
/nr/samba/jodata10/pro/CultSearcher/usr/trier/testdata/gravhaug/
larvik_2017_test_hele/LAS/larvik_2017_larvik_2017_test
```

```
python -W ignore main.py --utm-zone 33
/nr/samba/jodata2/pro/cultsearcher/data/oppland/nordfron/LAS/ols
tappen_test nordfron_olstappen_2010_test
```

```
(.env) trier@jocuda1:~/cultsearcher/sfrcnn/simple-faster-rcnn-
pytorch-master$ python3 main.py --utm-zone 33
/home/trier/jodata10/lidar/oppland/lesja_2013_utm33/LAS/lesja_te
st lesja 2013 test
```

```
python3 main.py --heaps --utm-zone 33
/home/trier/jodata2/data/lidar/vestfold/larvik_2017/LAS/bokeskog
en bokeskogen
```

```
python3 main.py --utm-zone 33
/home/trier/jodata2/data/lidar/vestfold/larvik_2017/LAS/test_1
test 1
```

```
(.env) trier@cuda:/opt/nr/cultsearcher/simple-faster-rcnn-
pytorch-master$ python3 main.py --utm-zone 33
/opt/nr/cultsearcher/lidar/vestfold/larvik_2017/LAS/test_1
test_1
```

From QGIS:

(.env) trier@jocuda1:~/cultsearcher/sfrcnn/gui\$ qgis

QQ	iIS 2.18.17 (on jocuda1)	+ _ = ×
Project Edit View Layer Settings Plugins Vector Raster Database Web Processing	Help	
) L 🖿 🖥 🖓 🔍 🛛 🏶 🕫 🗢 🕫 🖾 🖓 🖓 🖓 L L L	🔁 🛛 🔍 र 🕄 र ध्र र 堤 📰 💹 🖕 📼 र 🎾 🎞 🖌	
] //. // 🕞 🕆 🗇 🤫 🏹 👘 🔫 🕯 🖺 🗍 🔤 💎 🤫 🤫 🤫	🔤 🔢 💷 🗍 🚭	
Browser Panel 8 ×	Decent Drojecto	Processing Toolbox 8 ×
	Recent Projects	Search
B: ☐ Home F: ☐ Home B: ☐ / DB2 MSSOL MSSOL Spatialite G: → Spatialite G: → MSSOL Construct MSSOL MSSOL		⊕ GDAU/OGF (#8 geoalgorithms) ⊕ GRAS GIS 7 commands [314 g ⊕ GRAS evaluation of the second
Layers Panel 🖉 🗙		
< 通 ● ▼ 4, × 曝 爺 Ц		
		You can add more algorithms to the toolbox, enable additional providers. [close]
Coordinate	🕅 Scale 1:1,000,000 🗾 🔐 Magnifler 100% 🚔 Rotation 0.0	🕂 🔽 Render 🔮 EPSG:4326 🔍 🏼

Automated detection of cultural heritage in airborne lidar data

Ø		QGIS 2.18.17 (on jocuda1)	↑ _ □ X
Projec	t Edit	lew Layer Settings Plugins Vector Raster Database Web Processing Help	
	<u></u> [🗒 🖪 🖓 🐘 🖗 🗩 🗩 🖉 💭 💭 🖳 🔛 🔛 🕲 🔛 🖉 📜 🔍 🍳 📲 🖑 🎽 🔛 🖉 🔜 🖓 💭 🔛 🖉	
1.		- <u>``` G``</u> 🕅 🐨 🖻 🛛 🕾 🔊 🦉 🧠 🧠 🦷 🖷 🖉	
9 90	Browse	Panel 8×	Processing Toolbox 8 ×
V.	L 🕄	🖉 cultsearcher 🔶 🗉 🗶	Search
	÷-=		Recently used algorithms
	- 1	Parameters Log Kun as batch process	Cultsearcher GRASS GIS 7 commands [314 g
Po	- 062	inndatamappe [optional]	🖶 🍓 Models [0 geoalgorithms]
w	- 5	/home/trier/jodata2/pro/cultsearcher/data/oppland/nordfron/LAS/olstappen_test	QGIS geoalgorithms [117 geoal
(A) -	. 9	datasettnavn	Scripts [1 geoalgorithms] E- Tools
		olstappen_test	User scripts
3	- 3	crs	
1		EPSG:32633	
9			
0			
No.			
V.	·	₩ fangstgroper	
_	3		
	Layers I		
	۵ 🎽		
		0%	
		Run Close	You can add more algorithms to the
			toolbox, enable additional
	,		providers. [close]
		Coordinate 🛛 🗞 Scale 1:1.000,000 💌 🚔 Magnifier 100% 🚔 Rotation 0.0	🕂 🔽 Render 💮 EPSG:4326 🔍

<u> ()</u>		QGI5 2.18.17 (on jocudal) + _ C X
Projec	t Edit	View Layer Settings Plugins Vector Raster Database Web Processing Help
	<u> </u>	K - A SI A A A A A A A A A A A A A A A A A A
1.	/ 8	HA GHA KA A X D B H 🕅 🖼 🗞 🤫 🖷 🗞 H H 🤹
3,00	Browser	Panel #× Processing Toolbox #×
V _O	63	V cultsearcher
-	1-2	Parameters Log Run as batch process
	 	Algorithm cuttesarcher starting Imputative: Chy. Moment Kerj data Zaronicultisarcher / data / oppland/nordfron/LAS/oldtappen_test Imputative: Chy. Moment Kerj data Zaronicultisarcher / data / oppland/nordfron/LAS/oldtappen_test Imputative: Chy. Moment Kerj data Zaronicultisarcher / data / oppland/nordfron/LAS/oldtappen_test Imputative: Chy. Moment Kerj data Zaronicultisarcher / data / oppland/nordfron/LAS/oldtappen_test Imputative: Chy. Moment Kerj data Zaronicultisarcher / data / oppland/nordfron/LAS/oldtappen_test Imputative: Chy. Moment Kerj data Zaronicultisarcher / data / oppland/nordfron/LAS/oldtappen_test Imputative: Chy. Moment Kerj data / oppland/nordfron/LAS/oldtappen_test Imputative: Chy. Moment Kerj data / oppland/nordfron/LAS/oldtappen_test Imputative: Chy. Moment Kerj data / oppland/nordfron/LAS/oldtappen_test Implant: Chy
	Layers I	
		1. INFO:jon:productline.executor.Apply: ovtbon las2dem.ov /home/trier/iodata10/uro/CullSearcher/usr/trier/idetection/work/oistappen test/confilas2dem output.ison /home/trier/iodata10/uro/CullSearcher/usr/trier/idetection/work/oistappen test/confilas2dem input.son
		hun Coor
		Social Annual
	,	Coordinate Scale 1:1.000.000 🖌 Magnifier 1100% 🕂 Retation 0.0 🕂 PEGS4326 🚭
		

1.22				
Project Edit	View Layer Settings Plugins Vector Raster Database Web Proce	ssing Help		
🗋 🗁 🖡	u a a Q 🕄 🔍 🗨 🗣 🕂 🖉 🖓 🕼 🖫 🖫	🛄 🔁 🔍 🔍 - 🔃 - 🖏 - 🖳 🗐 🖾 \Sigma 🛲 - 🌄 🎩	•	
1 M // E				
_ // L	7 '0 10 '' 0 /% W ~ U ~ U U M ~ U 🗳 ~ % *			
V. Browse	r Panel	6 X cultsearcher	IProcessing Toolbox	(X)
	*2	Carcaban cirar		
	Parameters Log			Run as batch process
	701196211 071718-10181001171 Octament Pittashing Ammine Thomas 701196211 071718-10181001171 Octament Pittashing Ammine Thomas 701196211 071718-1018101171 701196211 071718-1018101171 701196211 071718-1018101171 701196211 071718-1018101171 701196211 071718-1018101171 701196211 071718-1018101171 701196211 07181101171 701196211 07181101171 701196211 07181101171 701196211 07181101171 701196211 07181101171 701196211 07181101171 701196211 07181101171 701196211 07181101171 701196211 07181101171 701196211 071811111111111111111111111111111111111	There in parameters and provide the second s	Generg 31, 145, 217, 248, 248, 118 Generg 32, 137, 46, 146, 147 Generg 33, 137, 46, 146, 147 Generg 33, 145, 217, 36, 146, 118 Generg 33, 145, 217, 36, 146, 118 Generg 33, 145, 217, 36, 246, 118 Generg 33, 145, 217, 37, 246, 246, 118 Generg 34, 245, 217, 37, 246, 246, 118 Generg 34, 245, 217, 37, 246, 246, 118 (137, 246, 247, 247, 246, 246, 247, 246, 247, 246, 247, 246, 247, 246, 247, 247, 246, 247, 246, 247, 247, 246, 247, 247, 246, 247, 247, 247, 247, 247, 247, 247, 247	2
🧹 (l	2019-03-14 09:59:03.855:DEBUG:nr.localrelief: Written file: /home/trie: 2019-03-14 09:59:03.855:DEBUG:nr.localrelief: Reading dtmflie: /home	/jodata10/pro/CultSearcher/usr/trier/detection/work/olstappen_test/localrelie /trier/jodata10/pro/CultSearcher/usr/trier/detection/work/olstappen_test/las7	rf/33-1-453-173-11-local.tif !dem/33-1-453-173-20-dem.tif	-
	2019-03-14 09:59:03.855:DEBUG:nr.localrellef: Reading dtmflie: /home/	rier/jodata10/pro/CultSearcher/usr/trier/detection/work/oistappen_test/las2c	tem/33-1-453-173-20-dem.tif	
				Run Close
			providers. [close]	
	Coordinate	Scale 1:1,000.000 💌 🔒 Magnifier 100% 🛨 r	lotation 0.0	Q

Automated detection of cultural heritage in airborne lidar data

Rotation 0.0

ĝ↓

Apply Help
Magnifier 100%

OK Cancel Apply

103

Draw effects

Style 🔹

Toggles the editing state of the current layer

Control feature rendering order

1000000000

28.5

ACC AD

Coordinate 97064.2,6830966.3 🛞 Scale 1:959

5.5 Simple faster R-CNN

This seemed to be the best alternative for testing if R-CNN works for cultural heritage detection.

https://github.com/chenyuntc/simple-faster-rcnn-pytorch

CuPy must also be installed. The version of cupy-cuda must match the installed cuda version.

```
trier@jocuda1:~$ nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2018 NVIDIA Corporation
Built on Sat_Aug_25_21:08:01_CDT_2018
Cuda compilation tools, release 10.0, V10.0.130
```

Thus, we should install cupy-cuda100:

```
(.env) trier@jocuda1:~/cultsearcher/sfrcnn$ pip install cupy-
cuda100
```

Alternatively, use:

```
trier@jocuda1:~$ cd /usr/local
trier@jocuda1:/usr/local$ ls -1
total 40
drwxr-xr-x 2 root root 4096 Jul 25 2018 bin
lrwxrwxrwx 1 root root 9 Jul 2 12:35 cuda -> cuda-10.1
drwxr-xr-x 3 root root 4096 Jul 2 12:31 cuda-10.0
drwxr-xr-x 17 root root 4096 Jul 2 12:34 cuda-10.1
drwxr-xr-x 2 root root 4096 Jul 25 2018 etc
drwxr-xr-x 2 root root 4096 Jul 25 2018 games
drwxr-xr-x 2 root root 4096 Jul 25 2018 include
drwxr-xr-x 4 root root 4096 Oct 9 2018 lib
lrwxrwxrwx 1 root root 9 Jul 25 2018 man -> share/man
drwxr-xr-x 2 root root 4096 Jul 25 2018 sbin
drwxr-xr-x 6 root root 4096 Oct 1 2018 share
drwxr-xr-x 2 root root 4096 Jul 25 2018 src
trier@jocuda1:/usr/local$
```

In this case, cuda version 10.1 is used.

sudo apt-get install python3-tk

5.5.1 How to install cuda

On one occasion, we got the following error message:

```
cupy.cuda.runtime.CUDARuntimeError: cudaErrorNoDevice: no CUDA-
capable device is detected
```

Apparently, there is something missing. By executing this command:

nvidia-smi

we got:

NVIDIA-SMI has failed because it couldn't communicate with the NVIDIA driver. Make sure that the latest NVIDIA driver is installed and running.

This is not a complete description.

Erik Vassaasen had to help me with installing the necessary Nvidia packages.

```
sudo apt-get install cuda
```

nvidia-smi

5.5.2 Detection parameters

In the demo code it is mentioned that the dog can be detected if the threshold is set to 0.6 instead of 0.7, but the comment fails to say where to make the change. This must be done in the source code file:

~/cultsearcher/sfrcnn/simple-faster-rcnn-pytorch-master/model/faster_rcnn.py

Go to the function

```
def use preset(self, preset):
```

line 156:

```
self.score thresh = 0.7
```

Actually, 0.6 is still too high, so use 0.58:


```
self.score thresh = 0.58
```

Remember to change back to 0.7.

5.5.3 Try the demo code

In

```
~/cultsearcher/sfrcnn/simple-faster-rcnn-pytorch-
master/utils/vis_tool.py
```

Change on line 8:

```
# ODT: Commented out since I don't use notebook
#matplotlib.use('Agg')
```

5.5.4 Try the training code

```
(.env) trier@jocudal:~/cultsearcher/sfrcnn/simple-faster-rcnn-
pytorch-master$ python train.py train --env='fasterrcnn-caffe' -
-plot-every=100 --caffe-pretrain
```

This crashed after 38 minutes, 5011+3699 iterations.

5011it [31:35, 2.63it/s]
3699it [07:55, 6.83it/s]Traceback (most recent call last):

To avoid crash, I edited the file:

~/cultsearcher/sfrcnn/simple-faster-rcnn-pytorch-master/utils/config.py

Changed num_workers from 8 to 0 in lines 14-19:

```
## ODT: Changed num_workers from 8 to 0
#num_workers = 8
num_workers = 0
## ODT: Changed num_workers from 8 to 0
#test_num_workers = 8
test_num_workers = 0
```


5.5.5 Visdom

I could not get his to work.

Open a browser and goto:

http://jocuda1:8097/

5.5.6 Pretrained models

trier@jocuda1:~/jodata2/pro/cultsearcher/pretrained/simple_faster_r-cnn\$ pwd

/home/trier/jodata2/pro/cultsearcher/pretrained/simple_faster_r-cnn

trier@jocuda1:~/jodata2/pro/cultsearcher/pretrained/simple_faster_r-cnn\$ ls -l

total 1606420

-rwxr--r-- 1 andersuw andersuw 548317845 Jan 30 13:25 chainer_best_model_converted_to_pytorch_0.7053.pth

-rwxr--r-- 1 andersuw andersuw 548328495 Jan 30 13:22 fasterrcnn_12211511_0.701052458187_torchvision_pretrain.pth.701052458187

-rwxr--r-- 1 andersuw andersuw 548321187 Jan 30 13:24 fasterrcnn_12222105_0.712649824453_caffe_pretrain.pth.712649824453

I first tried python 3 but it didn't work; I got a lot of warnings from urllib3/connections.py or something like that. Then I tried python 2. Now the warnings didn't appear.

```
(.env) trier@jocuda1:~/cultsearcher/sfrcnn_p2/simple-faster-
rcnn-pytorch-master$ python train.py train --env='fasterrcnn-
caffe' --plot-every=100 --caffe-pretrain
```

```
=====user config========
{'caffe_pretrain': True,
   'caffe_pretrain_path': 'checkpoints/vgg16_caffe.pth',
   'data': 'voc',
   'debug_file': '/tmp/debugf',
```



```
'env': 'fasterrcnn-caffe',
 'epoch': 14,
 'load path': None,
 'lr': 0.001,
 'lr decay': 0.1,
 'max_size': 1000,
 'min size': 600,
 'num workers': 8,
 'plot every': 100,
 'port': 8097,
 'pretrained model': 'vqq16',
 'roi sigma': 1.0,
 'rpn sigma': 3.0,
 'test num': 10000,
 'test num workers': 8,
 'use adam': False,
 'use chainer': False,
 'use drop': False,
 'voc data dir':
'/home/trier/jodata2/pro/cultsearcher/imgdataset/VOCdevkit/VOC20
07',
 'weight_decay': 0.0005}
======end=========
load data
model construct completed
WARNING: root: Setting up a new session...
WARNING:visdom:Without the incoming socket you cannot receive
events from the server or register event handlers to your Visdom
client.
```

5.5.7 Generate training images

The method must make sure that the true objects are in different locations within the extracted image portions. Conversely, if the true objects are always in the image centre of the training images, then the trained network will not be able to detect true objects if they are not in the image centre.

Source code for generating training images:

```
/nr/samba/jo/pro/CultSearcher/Usr/Trier/CultSearcher09/Src/extra
ct frcnn training imgs v3.pro
```

Execute the following commands on the ENVI prompt (no line breaks within each single command):

```
.COMPILE
/nr/samba/jo/pro/cultsearcher2018/usr/trier/eoTools/src/methods/
tools/file_tools.pro
```



```
.COMPILE
/nr/samba/jo/pro/CultSearcher/Usr/Trier/CultSearcher09/Src/cult
merge files.pro
.COMPILE
/nr/samba/jo/pro/CultSearcher/Usr/Trier/CultSearcher09/Src/extra
ct frcnn training imgs.pro
```

extract frcnn training images v3

Alternative versions of the source code, for use with the alternative subdivision into training, validation and test subsets, are in the below two source code files. The second makes eight versions of each extracted image, by rotation and flipping.

extract frcnn training imgs v1.pro

extract frcnn training imgs v1 augment-8.pro

5.5.8 Training of neural network Edit the file:

```
/nr/samba/jo/pro/cultsearcher2018/usr/trier/jo1 src/sfrcnn/simpl
e-faster-rcnn-pytorch-master/utils/config.py
```

In line 13, you may need to change:

```
ra data dir =
'/nr/samba/jodata10/pro/CultSearcher/imgdataset/kulturminner/RA test v3 0013/'
```

Edit the file:

```
/nr/samba/jo/pro/cultsearcher2018/usr/trier/jo1 src/sfrcnn/simpl
e-faster-rcnn-pytorch-master/data/ra dataset.py
```

In lines 144-147, you may need to update the list of class labels. E.g., if you have added a confusion class, this class name must be added.

```
RA BBOX LABEL NAMES = (
    'gravhaug',
    'fangstgrop',
    'kullmile',
    'kollenaturlig')
```

Execute:

```
(.env) trier@jocuda1:~/cultsearcher/sfrcnn/simple-faster-rcnn-
pytorch-master$ python -W ignore train.py train --
env='fasterrcnn-caffe' --plot-every=100 --caffe-pretrain
```


5.5.9 Code changes to allow zero objects in an image

The downloaded code crashes if there are no detected objects within an image. In many object detection scenarios, this is a common situation.

The following code changes were done.

```
In the source code file model/faster rcnn.py, at line 130:
class FasterRCNN(nn.Module):
    def forward(self, x, scale=1.):
...
        h = self.extractor(x)
        rpn locs, rpn scores, rois, roi indices, anchor = \
            self.rpn(h, img size, scale)
        ## ODT Added if-test
        if len(rois)>0:
            roi cls locs, roi scores = self.head(
                h, rois, roi indices)
        else:
            roi cls locs = []
            roi scores = []
        ## ODT End added if-test
        ## ODT Old code:
        #roi cls locs, roi scores = self.head(
            h, rois, roi indices)
        #
        ## ODT End old code
        return roi cls locs, roi scores, rois, roi indices
```

In the same source code file model/faster_rcnn.py, at line :

```
def predict(self, imgs,sizes=None,visualize=False):
...
roi_cls_loc, roi_scores, rois, _ = self(img, scale=scale)
#import pdb; pdb.set_trace()
## ODT Added if-test on len(rois)
if len(rois)>0:
    ## ODT The following old code is only executed if len(rois)>0
    # We are assuming that batch size is 1.
...
## ODT End of old code that is now executed only if
len(rois)>0
self.use_preset('evaluate')
```

self.train()


```
#import pdb; pdb.set_trace()
return bboxes, labels, scores
```

In the source code file model/region proposal network.py, line 130:

```
class RegionProposalNetwork(nn.Module):
   def forward(self, x, img size, scale=1.):
...
        for i in range(n):
            roi = self.proposal layer(
                rpn locs[i].cpu().data.numpy(),
                rpn fg scores[i].cpu().data.numpy(),
                anchor, img size,
                scale=scale)
            ## ODT Added if-test on len(roi)
            if len(roi)>0:
                batch index = i * np.ones((len(roi),), dtype=np.int32)
                rois.append(roi)
                roi indices.append(batch index)
            ## ODT End of added if-test.
            ## ODT Old code:
            #batch index = i * np.ones((len(roi),), dtype=np.int32)
            #rois.append(roi)
            #roi indices.append(batch index)
            ## ODT End of old code
        ## ODT Added if-tests on len(rois) and len(roi indices)
        if len(rois)>0:
            rois = np.concatenate(rois, axis=0)
        if len(roi indices)>0:
            roi indices = np.concatenate(roi indices, axis=0)
        ## ODT End of if-tests
        ## ODT old code:
        #rois = np.concatenate(rois, axis=0)
        #roi indices = np.concatenate(roi indices, axis=0)
        ## ODT End of old code
        return rpn locs, rpn scores, rois, roi indices, anchor
```

5.5.10 Running detection on extracted test images Run the code:

python demo_2_test.py

This code may be run in two modes. To demonstrate the detection results on one image at a time, use (line 51 in demo_2_test.py):

visualize each image = True

For each test image, the detection results are displayed first. Close the image window. Then the annotations for that image are displayed. Close the image window. Then the next test image is displayed, and so on.

The displayed labels are in English or Norwegian. The list of possible labels to display is specified on lines 46-51 in utils/vis_tool.py:

```
RA_BBOX_LABEL_NAMES = (
    'gravhaug',
    'fangstgrop',
    'kullmile',
    'kollenaturlig',
    'gropnaturlig')
```

The display of each image with labelled detections and annotations is nice to get an indication of whether the code works or not.

To, instead, run on all the test images without displaying them, but to get an estimate of detection performance, use (line 51 in demo_2_test.py):

visualize_each_image = False

Make sure that the input and output directories and file names are correct, as follows.

The parameters of the trained network were saved to a file each time the detection performance was improved during training. Make sure to use the correct file on line 27 in demo_2_test.py:

```
trainer.load('/nr/samba/jo/pro/cultsearcher2018/usr/trier/jo1_sr
c/sfrcnn/simple-faster-rcnn-pytorch-
master/checkpoints/fasterrcnn_04041754_0.7982244621705039')
```

The location of the image database is specified on lines 39-45:

```
img_dir =
'/nr/samba/jodata10/pro/CultSearcher/imgdataset/kulturminner/RA_
test_v3_0006/JPEGImages/'
list_dir =
'/nr/samba/jodata10/pro/CultSearcher/imgdataset/kulturminner/RA_
test_v3_0006/ImageSets/Main/'
test_list_file = os.path.join(list_dir, 'test.txt')
```

90

```
annotation_dir =
'/nr/samba/jodata10/pro/CultSearcher/imgdataset/kulturminner/RA_
test_v3_0006/Annotations/'
```

The output location is specified on lines 47-48 in demo_2_test.py:

```
test_out_dir = '/nr/samba/jodata2/pro/cultsearcher/usr/trier/'
test_out_file = os.path.join(test_out_dir,
'RA_test_v3_0006.csv')
```

The class names must match those used in the training

5.5.11 Running detection on large areas

Section 5.4 describes how to start the processing on a collection of lidar LAS files. The processing consists of the following steps:

- Conversion of LAS files to digital terrain model (DTM) raster files in the TIFF format.
- 2. Conversion of DTM raster files to local relief model (LRM) raster files.
- 3. Automatic detection of structures in the LRM files
- 4. Export of detection results and LRM raster files

Step 3 is the function cultdetection(), located in cultdetection.py. This function loops over all the LRM files and, for each LRM file, calls the function detect_obejcts() located in detect_obejcts.py

5.5.12 Compute detection statistics

```
The source code is in
detection_statistics.py
located in
/nr/samba/jo/pro/cultsearcher2018/usr/trier/jo1_src/sfrcnn/simpl
e-faster-rcnn-pytorch-master
```


6 Useful utilities

6.1 Conversion from LAS files to DTM, DSM, hillshade etc. Source code:

/nr/samba/jo/pro/CultSearcher/Usr/Trier/CultSearcher09/Src

Run from command line to produce DTM:

./cmd_convert_las_to_dem.pl
/nr/samba/jodata2/pro/cultsearcher/data/trondelag/steinkjer/LAS/
graamyra_vist_2016

The output is written to:

```
/nr/samba/jodata2/pro/cultsearcher/data/trondelag/steinkjer/DEM/
graamyra_vist_2016
```

In order to change parameter settings, edit cmd_las2vegt.pro and/or cmd_las2dem.pro. Both files contain a number of alternative ways to call batch_convert_las2dem, of which all but one is commented out. Select the one that fits your purpose and comment out the remaining.

For the Norwegian datasets, the following was used in cmd_las2dem.pro:

batch_convert_las2dem, lasDir, /HILLSHADE, /EXTRA, TO_UTM=33, PIXELSIZE=0.25

6.2 Conversion from ENVI files to Geotiff

Source code:

92

/nr/samba/jo/pro/cultsearcher2018/usr/trier/eoTools/src/methods/adhoc/convert_envi_to_geotiff.pro

In line 69, change

```
imagedirs =
["/nr/samba/jodata2/pro/cultsearcher/data/trondelag/steinkjer/DEM/egge 2012"]
```

to list the folders containing the files to be converted. Also, change the file pattern in line 234:

filePattern = imagedir + PATH SEP() + '*' + suffix

preferably by changing lines 227-228:

suffix = '_dsm'
newSuffix = ' dsm float.tif'

Run from the ENVI prompt by executing:

.compile /nr/samba/jo/pro/PilotArran/usr/trier/eoTools/src/methods/adhoc/convert_envi_to_geotiff.pro .compile /nr/samba/jo/pro/PilotArran/usr/trier/eoTools/src/methods/tools/file_tools.pro .compile /nr/samba/jo/pro/PilotArran/usr/trier/eoTools/src/methods/tools/basic_tools.pro convert_envi_to_geotiff

7 Alternative neural network implementations

This section lists alternatives to the selected *simple faster RCNN*. The alternatives were not used for various reasons.

7.1 Python faster R-CNN

Warning! py-faster-rcnn has been deprecated. They advice to use Detectron, which includes Mask R-CNN.

https://github.com/rbgirshick/py-faster-rcnn

7.2 Detectron

This could be an alternative. It seems to be able to detect object outlines instead of just bounding boxes.

https://github.com/facebookresearch/Detectron

7.3 Mask R-CNN

This is now part of Detectron.

7.4 Faster R-CNN

I tried to install this but gave up

https://github.com/jwyang/faster-rcnn.pytorch/tree/pytorch-1.0

7.4.1 Installation

(.env) trier@jocuda1:~/cultsearcher/frrcnn/faster-rcnn.pytorch

pip install -r requirements.txt

cd lib

python setup.py build

7.4.2 Pretrained models

(.env) trier@jocuda1:~/cultsearcher/frrcnn/faster-rcnn.pytorch/data\$

cp ~/jodata2/pro/cultsearcher/pretrained/vgg16/vgg16_caffe.pth .

cp ~/jodata2/pro/cultsearcher/pretrained/resnet101/resnet101_caffe.pth .

7.4.3 Data preparation

trier@jo2:/nr/samba/jodata2/pro/cultsearcher/imgdataset\$

wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar

tar xvf VOCtrainval_06-Nov-2007.tar tar xvf VOCtest_06-Nov-2007.tar tar xvf VOCdevkit_08-Jun-2007.tar

(.env) trier@jocuda1:~/cultsearcher/frrcnn/faster-rcnn.pytorch/data\$ In -s ~/jodata2/pro/cultsearcher/imgdataset/VOCdevkit VOCdevkit2007

7.4.4 Running the code

python trainval_net.py --dataset pascal_voc --net vgg16 --cuda

8 Results

8.1 Results on small test images

Table 8. Number of extracted images.

class	train	val	test	total
grave mound	720	349	89	1158
pitfall trap	1307	374	161	1842
charcoal kiln	908	230	109	1247
total	2935	953	359	4247

Table 9. Detection result on 359 small test images, each containing at least one cultural heritage object.

		predic		cor	rect		
	grave	pitfall	charcoal	back-			
true class	mound	trap	kiln	ground	sum	count	rate
grave mound	159	3	4	71	237	159	67 %
pitfall trap	2	268	7	96	373	268	72 %
charcoal kiln	0	0	181	6	187	181	97 %
background	27	66	82	0	175		
sum objects					797		
true positives						608	76 %
false negatives				173			22 %
false positives					175		22 %
wrong class					16		2 %
sum predicted	188	337	274		799		
correct	159	268	181		608		
producer's							
accuracy	85 %	80 %	66 %		76 %		

8.1.1 Implementation details

The script demo_2_test.py may be used to evaluate the detection performance on the test data. The following variables were set inside the source code of demo_2_test.py:

```
trainer.load('/nr/samba/jo/pro/cultsearcher2018/usr/trier/jo1_sr
c/sfrcnn/simple-faster-rcnn-pytorch-
master/checkpoints/fasterrcnn_10101046_0.7610503293336596_3-
classes RA test v3 0013')
```

```
img_top_dir =
'/nr/samba/jodata10/pro/CultSearcher/imgdataset/kulturminner/RA_
test_v3_0013/'
```


test_out_file = os.path.join(test_out_dir,
'RA_test_v3_0013.csv')

Command to run:

```
python -W ignore demo_2_test.py
```

By running demo_2_test.py, the 359 test images (Table 8, column 'test') were fed through the deep neural network. Each test image contained at least one true cultural heritage object. There was one test image for each true cultural heritage object. However, in many cases, more than one cultural heritage object were located inside the same 150 m × 150 m test image. Thus, the test images contained duplicates of many cultural heritage objects. Including duplicates, the total number of true cultural heritage objects inside the test images was 797 (Table 9). Of these 76% were correctly detected, and for the specific classes, grave mound 67%, pitfall trap 72% and charcoal kiln 97%. 22% of the true cultural heritage objects were missed by the method, while 2% were detected with wrong class. 22% of the objects that the method predicted as being cultural heritage were in fact not. However, the latter figure may be an optimistic estimate of the amount of false positives that the method may provide. All the test images contained at least one cultural heritage object. In operational use, there may be large areas, within an ALS dataset, with no cultural heritage objects visible in the data. Thus, the potential for false positives is much larger.

8.2 Results with confusion classes added

For the purpose of trying to reduce the number of false positives, confusion classes were added to the training data as follows. Detection was run on the Larvik 2017 dataset, consisting of 113 image tiles of 800 m × 600 m. The detection results were manually checked. False positives of grave mound were labelled 'natural knoll', and false positives of pitfall trap were labelled 'natural pit'. Then, two new versions of the annotated image sets were generated:

- 1. With one confusion class, natural knoll, in addition to the three true classes, grave mound, pitfall trap and charcoal kiln.
- 2. With two confusion classes, natural knoll and natural pit, in addition to the three true classes.

For each of these annotated image sets, training was done as described earlier in Section 5.5.8.

By using one confusion class, natural knoll, the true detection rate (consumer's accuracy) was 75% (Table 10). With two confusion classes, natural knoll and natural pit, the true detection rate was 70% (Table 11). Without confusion classes, the true detection rate was 76% (Table 9).

By comparing the three versions also on producer's accuracy (Table 12), adding one or two confusion classes did not improve the producer's accuracy compared to having no confusion classes.

				correct				
true class	grave mound	pitfall trap	charcoal kiln	natural knoll	background	sum	count	rate
grave mound	150	3	0	26	58	237	150	63 %
pitfall trap	13	270	4	2	84	373	270	72 %
charcoal kiln	1	0	180	0	6	187	180	96 %
natural knoll	4	0	0	37	12	53		
background	11	119	85	115	0	330		
sum objects						797		
true positives							600	75 %
false negatives					176			
wrong class						21		3 %
sum predicted	179	392	269			840		
correct	150	270	180			600		
producer's								
accuracy	84 %	69 %	67 %			71 %		

Table 10. Detection result on test images, with one confusion class.

Table 11. Detection result on test images, with two confusion classes.

	predicted class							correct	
	grave	pitfall	charcoal	natural	natural	background		count	rata
true class	mound	trap	kiln	knoll	pit	Dackground	sum	count	rate
grave mound	155	0	0	14	1	67	237	155	65 %
pitfall trap	1	227	4	0	15	126	373	227	61%
charcoal kiln	0	0	179	0	0	8	187	179	96 %
natural knoll	2	0	0	30	0	21	53		
natural pit	0	0	0	0	7	5	12		
background	19	47	140	75	65	0	346		
sum objects							797		
true positives								561	70 %
false negatives							231		
wrong class							5		0,6 %
sum predicted	177	274	323				774		
correct	155	227	179				561		
producer's									
accuracy	88 %	83 %	55 %				72 %		

Table 12. Summary of results with confusion classes added.

	no confu	sion class	one confu	ision class	two confusion classes		
	consumer's	producer's	consumer's	producer's	consumer's	producer's	
true class	accuracy	accuracy	accuracy	accuracy	accuracy	accuracy	
grave mound	67 %	85 %	63 %	84 %	65 %	88 %	
pitfall trap	72 %	80 %	72 %	69 %	61 %	83 %	
charcoal kiln	97 %	66 %	96 %	67 %	96 %	55 %	
all classes	76 %	76 %	75 %	71 %	70 %	72 %	

8.2.1 Implementation details

To generate annotated image sets, with one and two confusion classes, respectively, the following ENVI/IDL source code was used.

For one confusion class:

```
/nr/samba/jo/pro/CultSearcher/Usr/Trier/CultSearcher09/Src/extra
ct frcnn training imgs v4.pro
```

For two confusion classes:

```
/nr/samba/jo/pro/CultSearcher/Usr/Trier/CultSearcher09/Src/extra
ct frcnn training imgs v5.pro
```

Then, training was done on these two image sets. For the case with two confusion classes, the following code change was used.

In


```
/nr/samba/jo/pro/cultsearcher2018/usr/trier/jo1_src/sfrcnn/simpl
e-faster-rcnn-pytorch-master/utils/config.py
```

lines 21-22:

```
## image database with three object classes and two
confusion classes:
    ra_data_dir =
'/nr/samba/jodata10/pro/CultSearcher/imgdataset/kulturminner/RA_
test v5 0013/'
```

Then, training was done by running

```
python -W ignore train.py train --env='fasterrcnn-caffe' --plot-
every=100 --caffe-pretrain
```

The neural network parameters were written to file:

```
/nr/samba/jo/pro/cultsearcher2018/usr/trier/jo1_src/sfrcnn/simpl
e-faster-rcnn-pytorch-master/checkpoints/
fasterrcnn_10081549_0.5844880361754353
```

which we chose to rename as

```
fasterrcnn_10081549_0.5844880361754353_3-classes+2-
confusion RA test v5 0013
```

For the case with one confusion class, the following code change was used.

In

```
/nr/samba/jo/pro/cultsearcher2018/usr/trier/jo1_src/sfrcnn/simpl
e-faster-rcnn-pytorch-master/utils/config.py
```

lines 21-22:

```
## image database with three object classes and two confusion classes:
    ra_data_dir =
'/nr/samba/jodata10/pro/CultSearcher/imgdataset/kulturminner/RA_test_v4_0013/'
```

Then, training was done by running

```
python -W ignore train.py train --env='fasterrcnn-caffe' --plot-
every=100 --caffe-pretrain
```

The neural network parameters were written to file:


```
/nr/samba/jo/pro/cultsearcher2018/usr/trier/jo1_src/sfrcnn/simpl
e-faster-rcnn-pytorch-master/checkpoints/
fasterrcnn 10141216 0.6550685194936133
```

which we chose to rename as

```
fasterrcnn_10141216_0.6550685194936133_3-classes+1-
confusion_RA_test_v5_0013
```

Two experiments were run. The script $demo_4_test.py$ used one confusion class, 'natural knoll'. The script $demo_5_test.py$ used two confusion class, 'natural knoll' and 'natural pit'.

Commands to run:

python -W ignore demo_4_test.py

python -W ignore demo_5_test.py

8.3 Results on small test areas, corrected image extraction

We discovered that several of the labelled cultural heritage objects were missing in the set of extracted images (Table 13). Therefore, the extracted images were re-generated and double-checked. Then, training and testing was re-run.

class	train	val	test	total
grave mound	720	349	89	1158
pitfall trap	1307	374	161	1842
charcoal kiln	908	230	109	1247
total	2935	953	359	4247

Table 13. Number of extracted images, before correction.

Table 14. Number of extracted images, after double-checking.

class	train	val	test	total
grave mound	719	349	166	1234
pitfall trap	1306	374	162	1842
charcoal kiln	908	230	109	1247
total	2933	953	437	4323

One may observe that the number of objects are higher in Table 14 than in Table 3. The numbers in Table 3 are from the vector files, and count the number of objects that are inside each extent. However, Table 14 counts the number of extracted raster images of 600 by 600 pixels. These were extracted from LRM files with a small overlap. Thus, one vector object near an LRM file boundary may be included in more than one LRM file, thus resulting in more than one extracted raster image.

With the corrected image extraction, the main difference was that the number of grave mound images in the test subset was increased from 89 (Table 13) to 166 (Table 14). As a result, 406 out of 477 grave mound objects (85%, Table 15) were correctly predicted, compared to 159 of 237 (67%, Table 9). All in all, the correct classification rate (consumer's accuracy) increased from 76% (Table 9) to 84% (Table 15). At the same time, the producer's accuracy was reduced from 76% (Table 9) to 67% (Table 15).

Table 15. Detection result on 437 small test images, each containing at least one cultural heritage object.

		predict	ed class		cori	ect	
	grave	pitfall	charcoal	back-			
true class	mound	trap	kiln	ground	sum	count	rate
grave mound	406	7	0	64	477	406	85 %
pitfall trap	6	292	2	86	386	292	76 %
charcoal kiln	2	0	179	6	187	179	96 %
background	184	125	104	0	413		
sum objects					1050		
true positives						877	84 %
false negatives				156			15 %
false positives					413		39 %
wrong class					17		2 %
sum predicted	598	424	285		1307		
correct	406	292	179		877		
producer's							
accuracy	68 %	69 %	63 %		67 %		

8.3.1 Implementation details

To generate annotated image sets, the following ENVI/IDL source code was used.

```
/nr/samba/jo/pro/CultSearcher/Usr/Trier/CultSearcher09/Src/
extract_frcnn_training_imgs_v3_0020.pro
```

Then, training was done on this image set. The following code change was used.

In

```
/nr/samba/jo/pro/cultsearcher2018/usr/trier/jo1_src/sfrcnn/simpl
e-faster-rcnn-pytorch-master/utils/config.py
```

Line 14:

```
ra_data_dir =
'/nr/samba/jodata10/pro/CultSearcher/imgdataset/kulturminner/RA_
test_v3_0020/'
```

Then, training was done by running

```
python -W ignore train.py train --env='fasterrcnn-caffe' --plot-
every=100 --caffe-pretrain
```

The neural network parameters were written to file:


```
/nr/samba/jo/pro/cultsearcher2018/usr/trier/jo1_src/sfrcnn/simpl
e-faster-rcnn-pytorch-master/checkpoints/
fasterrcnn 12181825_0.763320822866815
```

which we chose to rename as

```
fasterrcnn 12181825 0.763320822866815 3-classes RA test v3 0020
```

The script demo_2_test_v3_0020.py is a modified version of demo_2_test.py with the following code changes.

In line 28:

```
trainer.load('/nr/samba/jo/pro/cultsearcher2018/usr/trier/jo1_sr
c/sfrcnn/simple-faster-rcnn-pytorch-
master/checkpoints/fasterrcnn_12181825_0.763320822866815_3-
classes_RA_test_v3_0020')
```

In line 41:

```
img_top_dir =
'/nr/samba/jodata10/pro/CultSearcher/imgdataset/kulturminner/RA_
test_v3_0020/'
```

In line 52:

test_out_file = os.path.join(test_out_dir, 'RA_test_v3_0020.csv')

Command to run:

python -W ignore demo 2 test v3 0020.py

8.4 Results on small test areas, alternative setup

class	train	val	test	total
grave mound	616	359	248	1223
pitfall trap	774	682	379	1835
charcoal kiln	907	230	110	1247
total	2297	1271	737	4305

Table 16. Number of extracted images, alternative setup.

Table 17. Detection result on 737 small test images, each containing at least one cultural heritage object

	predicted class				correct		
	grave	pitfall	charcoal	back-			
true class	mound	trap	kiln	ground	sum	count	rate
grave mound	522	1	1	191	715	522	73 %
pitfall trap	4	1009	0	228	1241	1009	81 %
charcoal kiln	0	0	176	12	188	176	94 %
background	137	154	22	0	313		
sum objects					2144		
true positives						1707	80 %
false negatives				431			20 %
false positives					313		15 %
wrong class					6		0,3 %
sum predicted	663	1164	199		2026		
correct	522	1009	176		1707		
producer's							
accuracy	79 %	87 %	88 %		84 %		

8.4.1 Implementation details

To generate annotated image sets the following ENVI/IDL source code was used.

```
/nr/samba/jo/pro/CultSearcher/Usr/Trier/CultSearcher09/Src/extra
ct frcnn training imgs v1.pro
```

In lines 66-67, make sure that the number of augmentation is set to 1:

```
num augmentations = 1
```

```
;;num_augmentations = 8
```

In line 946:

Automated detection of cultural heritage in airborne lidar data


```
out_image_dir =
"/nr/samba/jodata10/pro/CultSearcher/imgdataset/kulturminner/
RA test v1 0008 alt-subdiv"
```

From the ENVI/IDL prompt, execute (no line breaks within each command):

```
.COMPILE
/nr/samba/jo/pro/cultsearcher2018/usr/trier/eoTools/src/methods/
tools/file_tools.pro
```

```
.COMPILE
```

```
/nr/samba/jo/pro/CultSearcher/Usr/Trier/CultSearcher09/Src/cult_
merge files.pro
```

```
.COMPILE
/nr/samba/jo/pro/CultSearcher/Usr/Trier/CultSearcher09/Src/extra
ct_frcnn_training_imgs_v1.pro
```

extract frcnn training imgs v1

The test images have been created in a directory structure under:

```
/nr/samba/jodata10/pro/CultSearcher/imgdataset/kulturminner/RA_t
est_v1_0008
```

Then, training was done on this image set. The following code changes were used.

In

```
/nr/samba/jo/pro/cultsearcher2018/usr/trier/jo1_src/sfrcnn/simpl
e-faster-rcnn-pytorch-master/utils/config.py
```

lines 10-11:

```
## image database with three object classes and no confusion
classes, alternative setup:
```

```
ra_data_dir =
'/home/trier/jodata10/pro/CultSearcher/imgdataset/kulturminner/
RA_test_v1_0008/'
```

Then, training was done by running

```
python -W ignore train.py train --env='fasterrcnn-caffe' --plot-
every=100 --caffe-pretrain
```

The neural network parameters were written to file:


```
/nr/samba/jo/pro/cultsearcher2018/usr/trier/jo1_src/sfrcnn/simpl
e-faster-rcnn-pytorch-master/checkpoints/
fasterrcnn_11161914_0.7948160634148803
```

This file was renamed as

```
fasterrcnn_11161914_0.7948160634148803_3-
classes_RA_test_v1_0008_alt_subdiv
```

The script demo_1_test.py was used to run detection on the set of small test images.

Make sure the correct file with saved neural parameters is loaded. Change lines 21-22 if needed:

```
#Training with 3 classes and no confusion classes:
trainer.load('/nr/samba/jo/pro/cultsearcher2018/usr/trier/jo1_sr
c/sfrcnn/simple-faster-rcnn-pytorch-
master/checkpoints/fasterrcnn 04041754 0.7982244621705039')
```

Command to run:

python -W ignore demo_1_test.py

8.5 Results on small test areas, alternative setup and eight rotation/flip combinations

Table 18. Number of extracted images, alternative setup and eight rotation/flip combinations.

class	train	val	test	total
grave mound	4928	2880	1984	9792
pitfall trap	6192	5464	3040	14696
charcoal kiln	7256	1840	864	9960
total	18376	10184	5888	34448

Training of the neural network was done on the extracted images with the eight rotation/flip combinations (Table 18, columns 'train' and 'val'). However, testing was done on the un-rotated and non-flipped images (Table 16, column 'test').

Table 19. Detection result on 737 small test images, each containing at least one cultural heritage object

	predicted class				correct		
	grave	pitfall	charcoal	back-			
true class	mound	trap	kiln	ground	sum	count	rate
grave mound	603	0	3	109	715	603	84 %
pitfall trap	6	1073	1	161	1241	1073	86 %
charcoal kiln	1	0	180	7	188	180	96 %
background	252	267	80	0	599		
positives					2144		
true positives						1856	87 %
false negatives				277			13 %
false positives					599		28 %
wrong class					11		0,5 %
sum predicted	862	1340	264		2466		
correct	603	1073	180		1856		
producer's							
accuracy	70 %	80 %	68 %		75 %		

8.5.1 Implementation details

To generate annotated image sets the following ENVI/IDL source code was used.

```
/nr/samba/jo/pro/CultSearcher/Usr/Trier/CultSearcher09/Src/
extract frcnn training imgs v1.pro
```

On line 937:
```
num augmentations = 8
```

On line 946 (no line breaks):

```
out_image_dir =
"/nr/samba/jodata10/pro/CultSearcher/imgdataset/
kulturminner/RA_test_augment-8_0001_alt-subdiv"
```

The resulting image set was used for training/validation. However, for testing, rotated/flipped versions of the images were not needed.

Then, training was done on the image set. The following code changes were used.

In

```
/nr/samba/jo/pro/cultsearcher2018/usr/trier/jo1_src/sfrcnn/simpl
e-faster-rcnn-pytorch-master/utils/config.py
```

line 13:

```
ra_data_dir =
'/nr/samba/jodata10/pro/CultSearcher/imgdataset/kulturminner/RA_
test_augment-8_0001_alt-subdiv/'
```

Then, training was done by running

```
python -W ignore train.py train --env='fasterrcnn-caffe' --plot-
every=100 --caffe-pretrain
```

The neural network parameters were written to file:

```
/nr/samba/jo/pro/cultsearcher2018/usr/trier/jo1_src/sfrcnn/
simple-faster-rcnn-pytorch-master/checkpoints/
fasterrcnn_11172341_0.8056864563757405
```

This file was renamed to (no line breaks):

```
fasterrcnn_11172341_0.8056864563757405_3-
classes RA test augment-8 0001 alt-subdiv
```

The script demo_1_test.py was used to run detection on the set of small test images.

Make sure the correct file with saved neural parameters is loaded. Change lines 21-22 if needed, no line breaks within the file path:

```
#Training with 3 classes and no confusion classes:
trainer.load('/nr/samba/jo/pro/cultsearcher2018/usr/trier/
```



```
jol_src/sfrcnn/simple-faster-rcnn-pytorch-master/
checkpoints/fasterrcnn_11172341_0.8056864563757405_3-
classes_RA_test_augment-8_0001_alt-subdiv')
```

Make sure the correct output file name is used in line 52:

test_out_file = os.path.join(test_out_dir,
'RA_test_augment-8_0001_alt_subdiv.csv')

Command to run:

python -W ignore demo_1_test.py

8.6 Results on larger areas

object	dataset	subset	ubset object extent of dataset in UTM zone 33 N					
type	uuuset	Subset	count	west	east	south	north	of files
charcoal kiln	Lesja 2013	test	95	144 800	154 400	6 916 000	6 922 800	87
grave mound	Brumunddal 2016 part 1	test	50	269 600	283 200	6 736 200	6 753 000	358
grave mound	Brumunddal 2016 part 2	test	23	260 000	280 000	6 753 600	6 774 600	755
grave mound	Larvik 2017	test	57	220 800	226 400	6 553 200	6 565 200	113
pitfall trap	Dovre 2013	test	29	190 400	204 000	6 878 400	6 897 000	94
pitfall trap	Dovre 2017	test	15	190 400	196 800	6 882 000	6 897 000	139
pitfall trap	Dovre Folldal 2018	test	3	233 600	234 400	6 891 600	6 892 200	1
pitfall trap	Nordfron 2013	test	6	191 200	195 200	6 831 000	6 832 200	12
pitfall trap	Nordfron Olstappen 2010	test	41	195 200	202 400	6 830 400	6 832 200	21
Total nur	nber of files							1580

Table 20. Test set for evaluation of detection method on large areas. The number of files refers to the number of 800 m × 600 m image tiles.

The detection module was run on collections of 800 m × 600 m image files (Table 20). The true detection rate was 81% (Table 21). This was better than on the small test images (76%, Table 9). However, the set of small test images contained duplicates of many of the true objects. If the duplicates had been removed, then we would expect the true detection rate to be 81% also on the set of small test images.

A more important difference is that the number of false positives is now more than ten times the number of labelled true objects in the test data. Or to put it another way, the producer's accuracy is 5%. This means that out of the 5269 predicted objects, only 5% are true objects with correctly predicted class. 95% of the predicted objects do not match any labelled objects. This could potentially limit the usefulness of the automated detection method.

Confusion between classes is a minor problem, and occurs for 6 of the 319 true objects (2%).

		prec		cor	rect		
	grave	pitfall	charcoal				
true class	mound	trap	kiln	background	sum	count	rate
grave mound	95	2	3	30	130	95	73 %
pitfall trap	1	72	0	21	94	72	77 %
charcoal kiln	0	0	90	5	95	90	95 %
background	1746	2076	1184	0	5006		
sum objects					319		
true positives						257	81 %
false negatives				56			18 %
false positives					5006		1569 %
wrong class					6		2 %
sum predicted	1842	2150	1277		5269		
correct	95	72	90		257		
producer's							
accuracy	5 %	3%	7%		5%		

Table 21. Detection results on large areas.

Table 22. Confusion matrix for individual large areas of labelled test data. CK=charcoal kiln, GM=grave mound, PT=pitfall trap, Bg=background.

		true class -> predicted class							
dataset	CK->GM	CK->PT	CK->CK	CK->Bg	Bg->GM	Bg->PT	Bg->CK		
Lesja 2013	0	0	90	5	75	61	807		
dataset	GM->GM	GM->PT	GM->CK	GM->Bg	Bg->GM	Bg->PT	Bg->CK		
Brumunddal 2016 part 1	35	0	3	12	329	354	111		
Brumunddal 2016 part 2	15	1	0	7	866	1282	504		
Larvik 2017	45	1	0	11	420	153	40		
dataset	PT->GM	PT->PT	PT->CK	PT->Bg	Bg->GM	Bg->PT	Bg->CK		
Dovre 2013	1	25	0	3	41	67	175		
Dovre 2017	0	10	0	5	87	197	185		
Dovre Folldal 2018	0	3	0	0	0	3	1		
Nordfron 2013	0	2	0	4	3	20	168		
Nordfron Olstappen 2010	0	32	0	9	5	34	11		

Table 23. Detection rates for individual large areas of labelled test data.

		true positives false r		false nega	tives	wrong cla	
dataset with charcoal kilns	sum objects	count	rate	count	rate	count	rate
Lesja 2013	95	90	95 %	5	5%	0	0%
datasets with grave mounds							
Brumunddal 2016 part 1	50	35	70 %	12	24 %	3	6%
Brumunddal 2016 part 2	23	15	65 %	7	30 %	1	4%
Larvik 2017	57	45	79 %	11	19 %	1	2%
datasets with pitfall traps							
Dovre 2013	29	25	86 %	3	10 %	1	3%
Dovre 2017	15	10	67 %	5	33 %	0	0%
Dovre Folldal 2018	3	3	100 %	0	0%	0	0%
Nordfron 2013	41	32	78 %	9	22 %	0	0%
Nordfron Olstappen 2010	6	2	33 %	4	67 %	0	0%

Table 24. Producer's accuracy for individual large areas of labelled test data.

	true	sum	producer's	number	true objects	producer's accuracy /
dataset with charcoal kilns	positives	predicted	accuracy	of files	per file	true objects per file
Lesja 2013	90	1033	9 %	87	1,09	8 %
datasets with grave mounds						
Brumunddal 2016 part 1	35	832	4 %	358	0,14	30 %
Brumunddal 2016 part 2	15	2668	1%	755	0,03	18 %
Larvik 2017	45	659	7%	113	0,50	14 %
datasets with pitfall traps						
Dovre 2013	25	309	8%	94	0,31	26 %
Dovre 2017	10	479	2 %	139	0,11	19 %
Dovre Folldal 2018	3	7	43 %	1	3,00	14 %
Nordfron 2013	32	82	39 %	12	3,42	11 %
Nordfron Olstappen 2010	2	193	1%	21	0,29	4 %

8.6.1 Implementation details

Changes in config.py

Lines 12-13:

```
workdir = "/nr/samba/jodata10/pro/CultSearcher/usr/trier/detection_v3/work",
resultdir = "/nr/samba/jodata10/pro/CultSearcher/usr/trier/detection v3/results",
```

Line 46:

```
"model_file":
'/nr/samba/jo/pro/cultsearcher2018/usr/trier/jo1_src/sfrcnn/simp
le-faster-rcnn-pytorch-
```


master/checkpoints/fasterrcnn_10101046_0.7610503293336596_3classes RA test_v3_0013'

Commands to run detection on the test sets:

```
python -W ignore main.py --utm-zone 33
/nr/samba/jodata10/lidar/oppland/lesja_2013_utm33/LAS/lesja_test
lesja_2013_test
```

```
python -W ignore main.py --utm-zone 33
/nr/samba/jodata10/pro/CultSearcher/usr/trier/testdata/gravhaug/
larvik 2017 test hele/LAS/larvik 2017 larvik 2017 test
```

```
python -W ignore main.py --utm-zone 33
/nr/samba/jodata10/pro/CultSearcher/usr/trier/testdata/gravhaug/
brumunddal_2016_test_hele/LAS/brumunddal_2016_test_hele
brumunddal_2016_test_1
```

```
python -W ignore main.py --utm-zone 33
/nr/samba/jodata10/pro/CultSearcher/usr/trier/testdata/gravhaug/
brumunddal_2016_val_hele/LAS/brumunddal_2016_val_hele
brumunddal_2016_test 2
```

```
python -W ignore main.py --utm-zone 33
/nr/samba/jodata10/pro/CultSearcher/usr/trier/testdata/fangstgro
p/dovre_nordgudbrandsdal_2013_test_hele/LAS/dovre_2013
dovre_2013_test
```

```
python -W ignore main.py --utm-zone 33
/nr/samba/jodata10/pro/CultSearcher/usr/trier/testdata/fangstgro
p/lesja_vaga_test_hele/LAS/lesja_vaga_test_hele dovre_2017_test
```

```
python -W ignore main.py --utm-zone 33
/nr/samba/jodata10/lidar/oppland/dovre/LAS/folldal_2018_utm33
dovre_folldal_2018_test
```

```
python -W ignore main.py --utm-zone 33
/nr/samba/jodata10/pro/CultSearcher/usr/trier/testdata/fangstgro
p/nordfron_nordgudbrandsdal_2013/LAS/nordfron_2013_test
nordfron_2013_test
```

```
python -W ignore main.py --utm-zone 33
/nr/samba/jodata2/pro/cultsearcher/data/oppland/nordfron/LAS/ols
tappen_test nordfron_olstappen_2010_test
```

Command to get detection statistics:


```
(.env)
trier@jol:/nr/samba/jo/pro/cultsearcher2018/usr/trier/jol_src/sf
rcnn/simple-faster-rcnn-pytorch-master$
python detection statistics.py
```

The test set of large areas consists of the following directories:

Larvik 2017:

```
/nr/samba/jodata10/pro/CultSearcher/usr/trier/testdata/gravhaug/
larvik-hele/LAS/larvik-hele
```

Brumunddal 2016:

/nr/samba/jodata10/pro/CultSearcher/usr/trier/testdata/gravhaug/ brumunddal_2016_test_hele/LAS/brumunddal_2016_test_hele

/nr/samba/jodata10/pro/CultSearcher/usr/trier/testdata/gravhaug/ brumunddal 2016 val hele/LAS/brumunddal 2016 val hele

Nordfron Olstappen 2010:

/nr/samba/jodata2/pro/cultsearcher/data/oppland/nordfron/LAS/ols
tappen_test

Dovre 2013:

/nr/samba/jodata10/pro/CultSearcher/usr/trier/testdata/fangstgro
p/dovre nordgudbrandsdal 2013 test hele/LAS/dovre 2013

Dovre 2017:

/nr/samba/jodata10/pro/CultSearcher/usr/trier/testdata/fangstgro
p/lesja_vaga_test_hele/LAS/lesja_vaga_test_hele

Dovre Folldal 2018:

/nr/samba/jodata10/lidar/oppland/dovre/LAS/folldal_2018_utm33

Nordfron 2013:

/nr/samba/jodata10/pro/CultSearcher/usr/trier/testdata/fangstgro
p/nordfron_nordgudbrandsdal_2013/LAS/nordfron_2013_test

Lesja 2013:

/nr/samba/jodata10/lidar/oppland/lesja_2013_utm33/LAS/lesja_test

8.6.2 Overview maps of ALS test datasets

Overview maps of the test areas appear in Figure 73-Figure 81.

Figure 73. Larvik 2017 dataset, test subset.

Figure 74. Brumunddal 2016 dataset, test subset, part 1.

Figure 75. Brumunddal 2016 dataset, test subset, part 2.

Figure 76. Nordfron Olstappen 2010 dataset, test subset.

Figure 77. Dovre 2013 dataset, test subset.

Figure 78. Dovre 2017 dataset, test subset.

Figure 79. Dovre Folldal 2018 dataset, test subset.

Figure 80. Nordfron 2013 dataset, test subset.

Figure 81. Lesja 2013 dataset, test subset.

8.7 Result on larger areas, alternative setup

Table 25. Test set for evaluation of detection method on large areas, alternative setup. The)
number of files refers to the number of 800 m × 600 m image tiles.	

object	dataset	subsat	object	extent	extent of dataset in UTM zone 33 N				
type	ualaset	Subset	count	west	east	south	north	of files	
charcoal kiln	Lesja 2013	test	95	144 800	154 400	6 916 000	6 922 800	87	
grave mound	Brumunddal 2016 part 1	test	50	269 600	283 200	6 736 200	6 753 000	358	
grave mound	Larvik 2017	test	57	220 800	226 400	6 553 200	6 565 200	113	
grave mound	Sarpsborg 2015	test	18	276 000	284 800	6 565 200	6 575 400	7	
grave mound	Steinkjer 2011	test	30	321 600	348 800	7 087 800	7 113 000	313	
grave mound	Steinkjer 2017	test	44	322 400	345 600	7 097 400	7 119 600	59	
pitfall trap	Dovre 2013	test	29	190 400	204 000	6 878 400	6 897 000	94	
pitfall trap	Dovre 2017	test	15	190 400	196 800	6 882 000	6 897 000	139	
pitfall trap	Dovre Folldal 2018	test	3	233 600	234 400	6 891 600	6 892 200	1	
pitfall trap	Dovre Grims- dalen 2010	test	155	219 200	231 200	6 893 400	6 899 400	36	
pitfall trap	Nordfron 2012	test	31	200 800	219 200	6 833 400	6 840 600	7	
pitfall trap	Nordfron 2013	test	6	191 200	195 200	6 831 000	6 832 200	12	
pitfall trap	Nordfron 2017	test	1	211 200	212 000	6 831 000	6 831 600	1	
pitfall	Nordfron 2018	test 1	6	208 800	210 400	6 841 200	6 841 800	2	
trap		test 2	9	197 600	199 200	6 821 400	6 822 600	2	
pitfall trap	Nordfron Olstappen 2010	test	41	195 200	202 400	6 830 400	6 832 200	21	
pitfall trap	Nordfron Venabu 2018	test	7	224 000	227 200	6 844 800	6 858 600	4	
Total nur	nber of files							1256	

With an alternative subdivision of the datasets into training, validation and test subsets (Table 5, Table 25), the correct classification rate (consumer's accuracy) seemed to increase from 81% (Table 21) to 83% (Table 26). However, the two test data sets are not identical. At the same time, the producer's accuracy improved from 5% to 6%.

Automated detection of cultural heritage in airborne lidar data

Table 26. Detection results on large areas.

	predicted class					cor	rect
	grave	pitfall	charcoal				
true class	mound	trap	kiln	background	sum	count	rate
grave mound	152	1	1	45	199	152	76 %
pitfall trap	0	260	0	43	303	260	86 %
charcoal kiln	0	0	83	12	95	83	87 %
background	3770	2950	1270	0	7990		
sum objects					597		
true positives						495	83 %
false negatives				100			17 %
false positives					7990		1338 %
wrong class					2		0,3 %
sum predicted	3922	3211	1354		8487		
correct	152	260	83		495		
producer's							
accuracy	4 %	8%	6%		6%		

Table 27. Confusion matrix for individual large areas of labelled test data. CK=charcoal kiln, GM=grave mound, PT=pitfall trap, Bg=background.

	-						
dataset	CK->GM	CK->PT	CK->CK	CK->Bg	Bg->GM	Bg->PT	Bg->CK
Lesja 2013	0	0	83	12	81	92	262
dataset	GM->GM	GM->PT	GM->CK	GM->Bg	Bg->GM	Bg->PT	Bg->CK
Brumunddal 2016	41	0	0	9	435	330	29
Larvik 2017	44	0	0	13	369	121	20
Sarpsborg 2015	14	0	0	4	157	62	45
Steinkjer 2011	17	0	1	12	1222	162	366
Steinkjer 2015	36	1	0	7	781	520	247
dataset	PT->GM	PT->PT	PT->CK	PT->Bg	Bg->GM	Bg->PT	Bg->CK
Dovre 2013	0	25	0	4	57	68	50
Dovre 2017	0	12	0	3	66	206	58
Dovre Folldal 2018	0	3	0	0	0	1	0
Dovre Grimsdalen 2018	0	134	0	21	29	128	2
Nordfron 2012	0	27	0	4	280	415	85
Nordfron 2013	0	3	0	3	2	1	2
Nordfron 2017	0	1	0	0	2	3	4
Nordfron 2018	0	12	0	3	197	698	76
Nordfron Olstappen 2010	0	36	0	5	6	29	7
Nordfron Venabu 2018	0	7	0	0	86	114	17

8.8 Result on larger areas, alternative setup and eight rotation/flip combinations during training

By adding rotated and flipped versions of all images during training, but not during testing, the correct classification rate (consumer's accuracy) increased from 83% (Table 26) to 86% (Table 28). However, at the same time, the producer's accuracy was reduced from 6% to 3%.

		prec		cor	rect		
	grave	pitfall	charcoal				
true class	mound	trap	kiln	background	sum	count	rate
grave mound	172	0	2	25	199	172	86 %
pitfall trap	5	254	2	42	303	254	84 %
charcoal kiln	0	0	89	6	95	89	94 %
background	10669	4215	4279	0	19163		
sum objects					597		
true positives						515	86 %
false negatives				73			12 %
false positives					19163		3210 %
wrong class					9		1,5 %
sum predicted	10846	4469	4372		19687		
correct	172	254	89		515		
producer's							
accuracy	2 %	6%	2 %		3%		

Table 28. Detection results on large areas.

8.8.1 Implementation details

In simple-faster-rcnn-pytorch-master/config.py (which is imported by main.py), the following changes were made.

Lines 12-13:

```
workdir =
```

"/nr/samba/jodata10/pro/CultSearcher/usr/trier/detection_augment
-8_alt-subdiv/work",

```
resultdir =
"/nr/samba/jodata10/pro/CultSearcher/usr/trier/detection_augment
-8 alt-subdiv/results",
```

Line 49:

```
"model_file":
'/nr/samba/jo/pro/cultsearcher2018/usr/trier/jo1_src/sfrcnn/simp
```



```
le-faster-rcnn-pytorch-
master/checkpoints/fasterrcnn_11172341_0.8056864563757405_3-
classes RA test augment-8 0001 alt-subdiv'
```

Commands to run detection on the test sets:

```
python -W ignore main.py --utm-zone 33
/nr/samba/jodata10/lidar/oppland/lesja_2013_utm33/LAS/lesja_test
lesja 2013 test
python -W ignore main.py --utm-zone 33
/nr/samba/jodata10/pro/CultSearcher/usr/trier/testdata/gravhaug/
brumunddal 2016 test hele/LAS/brumunddal 2016 test hele
brumunddal 2016 test 1
python -W ignore main.py --utm-zone 33
/nr/samba/jodata10/pro/CultSearcher/usr/trier/testdata/gravhaug/
larvik 2017 test hele/LAS/larvik 2017 larvik 2017 test
python -W ignore main.py --utm-zone 33
/nr/samba/jodata10/pro/CultSearcher/usr/trier/testdata/gravhaug/
sarpsborg 2015 test hele/LAS/sarpsborg 2015 test hele
sarpsborg 2015 test hele
python -W ignore main.py --utm-zone 33
/nr/samba/jodata10/pro/CultSearcher/usr/trier/testdata/gravhaug/
steinkjer 2011 test hele/LAS/steinkjer 2011 test hele
steinkjer 2011 test hele
python -W ignore main.py --utm-zone 33
/nr/samba/jodata10/pro/CultSearcher/usr/trier/testdata/gravhaug/
steinkjer 2017 test hele/LAS/steinkjer 2017 test hele
steinkjer 2017 test hele
python -W ignore main.py --utm-zone 33
/nr/samba/jodata10/pro/CultSearcher/usr/trier/testdata/fangstgro
p/dovre nordgudbrandsdal 2013 test hele/LAS/dovre 2013
dovre 2013 test
python -W ignore main.py --utm-zone 33
/nr/samba/jodata10/pro/CultSearcher/usr/trier/testdata/fangstgro
p/lesja_vaga_test_hele/LAS/lesja_vaga_test hele dovre 2017 test
python -W ignore main.py --utm-zone 33
```

```
/nr/samba/jodata10/lidar/oppland/dovre/LAS/folldal_2018_utm33
dovre_folldal_2018_test
```

python -W ignore main.py --utm-zone 33
/nr/samba/jodata10/pro/CultSearcher/usr/trier/testdata/fangstgro
p/grimsdalen_2010_test_hele/LAS/grimsdalen_2010_test_hele
grimsdalen_2010_test_hele

python -W ignore main.py --utm-zone 33
/nr/samba/jodata10/pro/CultSearcher/usr/trier/testdata/fangstgro
p/nordfron_midtgudbrandsdal_2012_test_hele/LAS/nordfron_midtgudb
randsdal_2012_test_hele
nordfron_midtgudbrandsdal_2012_test_hele/

python -W ignore main.py --utm-zone 33
/nr/samba/jodata10/pro/CultSearcher/usr/trier/testdata/fangstgro
p/nordfron_nordgudbrandsdal_2013_test/LAS/nordfron_nordgudbrands
dal_2013_test_nordfron_nordgudbrandsdal_2013_test

python -W ignore main.py --utm-zone 33
/nr/samba/jodata2/pro/cultsearcher/data/oppland/nordfron/LAS/nor
dfron_2017_test nordfron_2017_test

python -W ignore main.py --utm-zone 33
/nr/samba/jodata10/pro/CultSearcher/usr/trier/testdata/fangstgro
p/nordfron_2018_test_hele/LAS/nordfron_2018_test_hele
nordfron_2018_test_hele

python -W ignore main.py --utm-zone 33
/nr/samba/jodata2/pro/cultsearcher/data/oppland/nordfron/LAS/ols
tappen_test nordfron_olstappen_2010_test

python -W ignore main.py --utm-zone 33
/nr/samba/jodata10/pro/CultSearcher/usr/trier/testdata/fangstgro
p/nordfron_venabu_2018_test_hele/LAS/nordfron_venabu_2018_test_h
ele nordfron_venabu_2018_test_hele

Command to compute detection statistics:

python detection statistics augment-8 alt-subdiv.py

8.9 Results from new archaeological mapping

The method was applied to the entire area (457 km²) of Øvre Eiker municipality, Buskerud County, Norway. This municipality is covered by three non-overlapping ALS datasets (Table 7). More than 1000 previously unknown charcoal kiln locations were mapped (e.g., Figure 82, Figure 83). Manual inspection (e.g., Figure 83) indicated that few (if any) false predictions were made. Therefore, all the predicted charcoal kilns were inserted into the Askeladden database of cultural heritage in Norway. These charcoal kiln locations may be viewed in the portal <u>https://kulturminnesok.no/</u> (Figure 84-.

E.g., the five charcoal kilns in Figure 83 may be seen in the centre of Figure 84. By clicking on one of them, a detailed view is opened (Figure 85). The comment (in Norwegian) "Funnet med CultSearcher", i.e., found by CultSearcher, indicates that the charcoal kiln was detected by the automated method.

By panning the map view to cover all of Øvre Eiker municipality, in several overlapping map portions (Figure 87-Figure 97), all the charcoal kiln locations, plus any other cultural heritage locations in the Askeladden database, may be seen.

Figure 82. Detected charcoal kiln locations (red circles) for a forested area (pale green) south of Bingen in Øvre Eiker municipality.

Figure 83. Five of the detected charcoal kilns, near Vestby, south of Bingen.

Figure 84. Cultural heritage locations near Vestby, Øvre Eiker.

Figure 85. Details of database record of charcoal kiln.

Figure 86. By zooming out from the detailed map view (Figure 84), the northwestern corner of Øvre Eiker municipality is displayed, with cultural heritage locations (brown symbols).

Figure 87. The map portion of Figure 86, i.e., part 1 of Øvre Eiker municipality..

Figure 88. Part 2 of Øvre Eiker municipality, i.e., south of part 1.

Figure 89. Part 3 of Øvre Eiker municipality, i.e., south of part 2.

Figure 90. Part 4 of Øvre Eiker municipality, i.e., south of part 3.

Figure 91. Part 5 of Øvre Eiker municipality, i.e., south of part 4.

Figure 92. Part 6 of Øvre Eiker municipality, i.e., southeast of part 5.

Figure 93. Part 7 of Øvre Eiker municipality, i.e., east of part 1 and part 2.

Figure 94. Part 8 of Øvre Eiker municipality, i.e., south of part 7.

Figure 95. Part 9 of Øvre Eiker municipality, i.e., south of part 8.

Figure 96. Part 10 of Øvre Eiker municipality, i.e., south of part 9.

Figure 97. Part 11 of Øvre Eiker municipality, i.e., south of part 10, east of part 5 and northeast of part 6.

9 Discussion and conclusions

The best classification performance was 86% correct classification (consumer's accuracy), i.e., the how many of the true cultural heritage objects were correctly predicted by the method. This was obtained on a test set of labelled lidar data not seen during training. At the same time, the producer's accuracy was 3%, i.e., how many of the objects predicted by the method were in fact true cultural heritage objects. Thus, the main potential for improvement is in reducing the large number of false predictions, i.e., increasing the producer's accuracy. This should be the focus for future improvements of the detection method.

The method has been used on a number of ALS datasets covering a variety of landscape types, including forest, mountain, urban, rural, agricultural and coastal areas. Although a detailed quantification of detection performance has not yet been performed, some trends were observed. The method performed better on charcoal kilns than on the other object types. In the inland, the method performed well on pitfall traps. This included many areas that are lacking detailed cultural heritage mapping. An unexpected bonus was that charcoal pits / tar pits were detected, albeit as pitfall traps. For grave mounds, the method was less successful. Confusion between natural knolls and grave mounds was the main problem. Still, the method may be useful by giving an overview of locations in the landscape with structures resembling grave mounds. These could then be checked visually by experienced archaeologist, who could spot which locations that need to be checked by field visits.

There are some recent projects that involve citizen volunteers to help identify which automatically detected structures are true archaeological remains. In the Chilterns in England (Morrison and Pevelier, 2019; <u>https://chilternsbeacons.org/wp/</u>), citizens use an internet portal to view different ALS visualisations of an area to identify and map archaeology. In the Veluwe area in the centre of the Netherlands (Lambers *et al.*, 2019; <u>https://www.zooniverse.org/projects/evakap/heritage-quest</u>), an internet portal is also used. Participants are asked to mark every potential barrow, charcoal kiln and Celtic field within a 300 m by 300 m subimage. Each individual image is checked by at least eight different users.

Our method is based on transfer learning, but in a setting that may not be optimal. We used a deep neural network that is pre-trained on natural scene images, followed by training on ALS visualisations with labelled cultural heritage remains. As the two types of image are quite different, there is a potential for improvement by pre-training the deep neural network on a large image set that is more similar to the ALS visualisations that we used.

Several researchers are suggesting similar approaches:

1. Deep clustering. Unsupervised learning of visual features is performed on remote sensing images. Dzeroski and Kokalj (2019) of Slovenia presents a project that will address this, starting in 2020. Two application areas are included:

- a. archaeology and
- b. land cover classification.
- Insert synthetic objects of interest into images with 'background' terrain. Kücükdemirci and Sarris (2019) presents a project which uses pre-training of a U-net on synthetic images, for segmentation of archaeological structures in geophysical images. E.g., circles and straight lines are inserted into images of 'background' terrain.

Another issue related to object detection is that in the majority of landscapes, the absence of objects is much more frequent than the presence. Kramer et al. (2019) observes that the RetinaNet addresses this imbalance of foreground versus background.

An issue that is observed at terrain discontinuities, e.g., a cliff, is that the local relief model visualisation may hide archaeological objects that are close to the terrain discontinuity. A possible solution could be to use another ALS visualisation, e.g. openness.

Landauer and Hesse (2019) obtain very low false positive rates on a set of 29 000 labelled, possible charcoal kilns, with 95% detection rate. The labels ranged from 0 = 'certainly not' to 4 = 'definetly yes'. For each 40 m by 40 m image of a possible charcoal kiln, the final label is the average of the labels provided by several human users. Of the 30 false positives (i.e., images labelled with 0, but detected as charcoal kiln by the deep neural network) 15 were in fact charcoal kilns and thus wrongly labelled 0.

10 Conference presentations

The project has been presented at three conferences in 2019:

- Nordic Remote Sensing Conference, 17-19 September 2019, Århus, Denmark.
- 24th Conference on Cultural Heritage and New Technologies, November 4-6 2019, Vienna, Austria.
- Artificial Intelligence, Machine Learning and Deep Learning in Archaeology, 7-8 November 2019, Rome, Italy.

10.1 Automated mapping of cultural heritage in Norway from airborne lidar data using Faster RCNN

Øivind Due Trier

This paper was presented at the Nordic Remote Sensing Conference, 17-19 September 2019, Århus, Denmark.

10.1.1 Abstract

We present a new method for automated mapping of historic monuments such as grave mounds, pitfall traps and charcoal kilns. The method is based on a region-proposal convolutional neural network called "simple faster R-CNN". The network was pre-trained on a large database of natural scene images. Each image had annotations in the form of bounding boxes with associated class labels. Then the network was trained on images derived from airborne lidar data.

The lidar point cloud data was converted to a digital terrain model (DTM) by keeping all points that were labelled as 'ground'. The DTM was then converted to a simplified local relief model by subtracting a smoothed version of the DTM. The local relief model enhances local detail in the DTM while suppressing the general landscape topography. Thus, cultural heritage remains such as grave mounds, pitfall traps and charcoal kilns are often visible.

Each geographic area was divided into disjoint areas for training, validation and testing. Training, validation and test images of sizes 150 m × 150 m were extracted from the local relief model data. Each image contained one or more cultural heritage objects clearly visible.

For the test images, the overall correct classification rate was 83%, and for the specific classes: grave mound 81%, pitfall trap 78% and charcoal platform 95%. 16% of the true cultural heritage objects were missed by the method. 1% of the cultural heritage objects were detected with wrong class. 21% of the objects that the method predicted as being cultural heritage were in fact not.

The new method was implemented in an automated processing chain that will be used by the Directorate for Cultural Heritage in Norway (Riksantikvaren) to improve the

national cultural heritage mapping. The main focus is on grave mounds and pitfall traps, since these are protected by Norwegian law.

10.1.2 Types of cultural heritage

The focus was on automated detection of three types of cultural heritage that occur frequently in many types of Norwegian landscape:

- Grave mounds (Figure 98Figure 99) from the Viking Age
- Pitfall traps (Figure 100) from deer hunting systems
- Charcoal kilns (Figure 101)

Figure 98. Grave mounds in Norway's largest Viking Age grave field at Vang, Oppdal municipality, Trøndelag County.

Figure 99. One of the larger grave mounds at Vang, Oppdal, Trøndelag.

Figure 100. Pitfall trap, Oppland County. Photo: Lars Holger Pilø, Oppland County Administration.

Automated detection of cultural heritage in airborne lidar data

Figure 101. Charcoal kiln, Lesja, Oppland County.

10.1.3 Lidar - light detection and ranging

Airborne lidar data provides elevation measurements, both from the ground surface and vegetation such as trees. Since each (x, y, z) point in the lidar data has been labelled as 'ground' (i.e., terrain) or 'other' (including buildings, vegetation, etc.), the non-terrain points may be removed, and a very detailed digital terrain model (DTM) may be obtained (Figure 102).

Figure 102. A forested area in Larvik municipality, Vestfold County. Left: air photo. Middle: digital surface model from airborne lidar data, first hits. Right: digital terrain model from airborne lidar data, ground hits.

10.1.4 Background

Existing cultural heritage mapping is incomplete. Some areas are mapped well, while some areas have only chance discoveries. The positional accuracy may be bad in old mapping.

There is now a major effort to create a new national elevation model for Norway. Accurate data is collected in the form of airborne laser scanning below the timber line. Automatic image matching is used above the timber line.

The Norwegian Computing Center has, over a number of years, developed semiautomatic detection methods for some types of cultural heritage objects. The Directorate for Cultural Heritage in Norway want to run the detection methods in-house

10.1.5 Challenges

The following challenges were identified:

- 1. Develop an automated processing chain
- 2. Reduce processing time
- 3. Reduce the number of false positives and false negatives
- 4. Develop detection methods that may be applied on all Norwegian landscapes

10.1.6 Recent developments

- Region proposal combined with convolutional neural network (CNN) classification: R-CNN (Girshick et al., CVPR 2014)
- Fast R-CNN (Girshick et al., ICCV 2015)
- Faster R-CNN (Ren et al., NIPS 2015; T-PAMI 2017)
- Mask R-CNN (He et al., ICCV 2017)
- Detectron (Girshick et al., 2018)

10.1.6.1 Visualisation of airborne lidar data

In order to use the DTM data for automated object detection, a suitable visualization method had to be used. The local relief model is able to capture local detail while suppressing the general terrain elevation ().

Figure 103. Lidar data from Bøkeskogen, Larvik municipality, Vestfold County. Several grave mounds are visible. Left: terrain elevation. Middle: hillshade. Right: local relief model.

Figure 104. Lidar data from Omsland, Larvik municipality. Several grave mounds are visible. Left: terrain elevation. Middle: hillshade. Right: local relief model.

Figure 105. Lidar data from Nord-Fron municipality, Oppland County. A deer hunting system with pitfall traps is visible. Left: terrain elevation. Middle: hillshade. Right: local relief model.

10.1.7 Alternatives for R-CNN

We used: simple faster R-CNN: <u>https://github.com/chenyuntc/simple-faster-rcnn-pytorch.</u>

Detectron:

https://github.com/facebookresearch/Detectron

Mask R-CNN (included in Detectron)

Python faster R-CNN:

py-faster-rcnn has been deprecated. They advice to use Detectron, which includes Mask R-CNN.

10.1.8 Modifications to code

List of class labels in python code must be updated to agree with the class labels used in the annotations of the image database:

- gravhaug (grave mound)
- fangstgrop (pitfall trap)
- kullmile (charcoal kiln / charcoal burning platform)

• any confusion classes, e.g., natural mound

Code crashed if no objects were found inside a 600 × 600 pixels subimage. Solution: add IF-tests

10.1.9 Examples

By running the code in display mode, detection results may be viewed to verify if the method is able to detect grave mounds (), pitfall traps () and charcoal kilns ().

Figure 106. Examples of detected grave mounds (in Norwegian: gravhaug), Larvik municipality, Vestfold County.

Figure 107. Examples of detected pitfall traps (in Norwegian: fangstgrop), Nord-Fron municipality, Oppland County.

Figure 108. Examples of detected charcoal kilns (in Norwegain: kullmiler), Lesja municipality, Oppland County.

10.1.10 Training data

The training set was used to optimize the neural network parameters. The validation set was used to select the best set of neural network parameters encountered so far.

Training set: 2180 images – 2180 unique objects

- 11262 grave mounds
- 1840 pitfall traps
- 2170 charcoal platforms

Validation set: 1142 images - 1142 unique objects

- 685 grave mounds
- 2980 pitfall traps
- 345 charcoal platforms

10.1.11 Results

The detection results (Table 29) were obtained by running the method on 734 test images not seen during training. Each test image contained one or more cultural heritage objects, and 734 unique cultural heritage objects in total. So, Images overlap other images if they contain multiple cultural heritage objects. Thus, there were 2160 cultural heritage objects including duplicates.

82% of cultural heritage objects are detected with correct class. Less than 1% of the cultural heritage objects are detected but with wrong class. 18% of cultural heritage objects are not detected 17% of the predicted objects are false (background).

There were no images without cultural heritage objects. Thus, the reported number of false positives (17%) may be a too optimistic estimate for a large landscape.

	predicted object					correct detections	
	grave		charcoal	background			
true object	mound	pitfall trap	platform	terrain	sum	count	percent
grave mound	512	3	0	189	704	512	72,73 %
pitfall trap	0	1086	0	188	1274	1086	85,24 %
charcoal platform	0	0	168	14	182	168	92,31 %
background terrain	146	177	33	0	356		
sum true objects					2160		
sum correct detections						1766	81,76 %
wrong class					3		0,14 %
missing objects				391			18,10 %
sum							100,00 %
all detections					2125		
false positives					356		16,75 %

Table 29. Detection results on 734 small test images of 150 m by 150 m, not seen during training, and each containing at least one cultural heritage object.

The method was then used on all of Øvre Eiker municipality, an area with few recorded charcoal kilns; thus, no ground truth existed. This is the normal situation for the practical use of the method, in order to discover previously unknown cultural heritage locations. More than 1000 charcoal locations were predicted by the method (). A quick visual inspection (e.g.,) confirmed that the large majority, if not all, of the predicted charcoal locations were true. Thus, they were included into the Askeladden database of all cultural heritage locations in Norway.

Figure 109. Some of the predicted charcoal kilns (red circles) in forested areas (pale green) in Øvre Eiker municipality.

Figure 110. Visual inspection of six predicted charcoal kilns (purple circles) in Øvre Eiker municipality. Top: hillshade visualization of DTM. Bottom: Local relief visualization of DTM.

10.1.12 Future work

In order to estimate detection results for operational use, we will run automatic detection on entire LAS files and not only on small image portions which contain at least one cultural heritage object.

In order to avoid missing cultural heritage at image borders, detection must be run on overlapping images. Then, duplicate predictions must be eliminated.

The ground truth data must be valid for all the lidar data included in the test set. The predicted cultural heritage objects will be compared with the ground truth data. We expect to see more false positives. However, we expect the method to be able to detect roughly the same percentage of the true cultural heritage objects.

One possible workaround to reduce the number of false positives may be to add confusion classes. This may be done by running the detection method on training and validation areas. Then, false positives may be labelled with new class names:

- Natural mound
- Natural pit
- Natural platform

Also, it may be necessary to check if any false positives are actually true positives.

With the confusion class objects added to the training and validation sets, training will be re-run.

Figure 111. While on fieldwork in Øystre Slidre municipality, Oppland County, two archaeologists spotted this road sign at Lidar church.

Figure 112. Lidar church is located near Skammestein in Øystre Slidre municipality, between Fagernes and Beitostølen.

10.2 Detection of cultural heritage in airborne laser scanning data using Faster RCNN. Results on Norwegian data

Øivind Due Trier

This paper was presented at the 24th Conference on Cultural Heritage and New Technologies, 4-6 November 2019, Vienna, Austria.

Keywords: grave mounds; hunting systems; charcoal kilns; automated detection; lidar

10.2.1 Introduction

The existing cultural heritage mapping in Norway is incomplete. Some selected areas are mapped well, while the majority of areas only contain chance discoveries, often with bad positional accuracy.

Automated methods for detecting some types of cultural heritage objects from airborne laser scanning (ALS) data have previously been developed. These have contributed to increasing the number of areas that are mapped well. However, the methods have a number of issues that have prevented them from being used systematically on all available ALS datasets.

All of Norway will soon be covered by airborne laser scanning data for the purpose of creating a new national elevation model. The Directorate for Cultural Heritage in Norwaywants to use this opportunity to obtain a more complete and accurate mapping of cultural heritage in the landscape. The focus is on Iron Age grave mounds and deer hunting systems.

The following challenges were identified: (1) develop an automated processing chain, (2) reduce processing time, (3) reduce the number of false positives and false negatives, and (4) develop detection methods that may be applied on all Norwegian landscapes.

A recent development in deep neural networks for object detection in natural images is the region-proposing convolutional neural network (R-CNN; Girshick *et al.*, 2014), which may also be used for cultural heritage detection in ALS data. Verschoof-van der Vaart and Lambers (2019) use Faster R-CNN (Ren *et al.*, 2017) to detect prehistoric barrows and Celtic fields in ALS data from the Netherlands.

He *et al.* (2017) extend Faster R-CNN into Mask R-CNN by providing, for each detected object, an object mask in addition to the bounding box provided by Faster R-CNN.

10.2.2 Data

ALS point cloud data was downloaded from <u>http://hoydedata.no</u>. This internet site provides free access to all ALS data in Norway.

Vector maps of known locations of grave mounds and pitfall traps were provided as ESRI shape files by the Directorate for Cultural Heritage in Norway. Vector maps of charcoal kiln locations were provided by Oppland County Administration.

149

The data were split into three parts, named 'training', 'validation', and 'test'. The neural network parameters were learned from the training data iteratively by minimising a loss function. The validation data were used to select the best set of neural network parameters. The test data were then used to estimate detection performance on data not seen during training.

10.2.3 Methods

10.2.3.1 Preprocessing

The ALS point cloud data were converted to a digital terrain model (DTM) with 0.25 m pixel spacing. The DTM was converted to a simplified local relief model (LRM) by subtracting a smoothed version of the DTM. The LRM enhances local elevation differences while suppressing the general landscape topography. Thus, cultural heritage objects including grave mounds, pitfall traps and charcoal kilns may be visible.

For each cultural heritage object in the vector data, a 150 m × 150 m image was extracted from the LRM. The object's position within the subimage was selected at random. This was done in order to prevent the deep neural network from always predicting the object in the image centre. All cultural heritage objects within the subimage were included in the image annotation. Thus, each image contained one or more cultural heritage objects clearly visible.

10.2.3.2 Detection

For detection, the python code library *simple faster R-CNN* was downloaded from <u>https://github.com/chenyuntc/simple-faster-rcnn-pytorch</u>. For each detected object the R-CNN predicts a bounding box, a class label and a score value in the range 0.0 - 1.0. A few modifications had to be done. (1) The list of class labels was changed to match the class labels used in the image annotations. (2) The downloaded code crashed if there were no detected objects within an image. Thus, if-tests had to be added.

When these changes were made, the python code predicted the location and sizes of grave mounds (Figure 113), pitfall traps (Figure 114) and charcoal kilns (Figure 115) in LRM images of size 600 × 600 pixels.

Figure 113. Predicted grave mound locations.

Figure 114. Predicted pitfall trap locations.

Figure 115. Predicted charcoal kiln locations.

10.2.3.3 Processing chain

The preprocessing and detection methods were integrated into a python script that may be called from QGIS or started from the Linux command line. The input is a collection of LAS files, and the output is two ESRI shape files for each object type; centre points in one file and object outlines in another file. Each object outline is obtained by converting the predicted bounding box to a circle.

10.2.4 Results

By running on the test images, the overall correct classification rate was 83%, and for the specific classes, grave mound 81%, pitfall trap 78% and charcoal kiln 95%. 16% of the true cultural heritage objects were missed by the method, while 1% was detected with wrong class. 21% of the objects that the method predicted as being cultural heritage were in fact not. However, the latter figure may be an optimistic estimate of the amount of false positives that the method may provide. All the test images contained at least one cultural heritage object. In operational use, there may be large areas, within

an ALS dataset, with no cultural heritage objects visible in the data. Thus, the potential for false positives is much larger. Evaluation of the detection and classification performance in such a setting will be done in the near future.

10.3 Automated detection of grave mounds, deer hunting systems and charcoal burning platforms from airborne lidar data using faster-RCNN

Øivind Due Trier and Kristian Løseth

This paper was presented at the conference: Artificial Intelligence, Machine Learning and Deep Learning in Archaeology, 7-8 November 2019, Rome, Italy.

We present a new method for automated mapping of historic monuments such as grave mounds, pitfall traps and charcoal kilns. The method is based on a region-proposal convolutional neural network called "simple faster R-CNN". The network was pre-trained on a large database of natural scene images. Each image had annotations in the form of bounding boxes with associated class labels. Then the network was trained on images derived from airborne lidar data.

The lidar point cloud data was converted to a digital terrain model (DTM) by keeping all points that were labelled as 'ground'. The DTM was then converted to a simplified local relief model by subtracting a smoothed version of the DTM. The local relief model enhances local detail in the DTM while suppressing the general landscape topography. Thus, cultural heritage remains such as grave mounds, pitfall traps and charcoal kilns are often visible.

Each geographic area was divided into disjoint areas for training, validation and testing. Training, validation and test images of sizes 150 m × 150 m were extracted from the local relief model data. Each image contained one or more cultural heritage objects clearly visible.

For the test images, the overall correct classification rate was 83%, and for the specific classes: grave mound 81%, pitfall trap 78% and charcoal platform 95%. 16% of the true cultural heritage objects were missed by the method, while 1% were detected with wrong class. 21% of the objects that the method predicted as being cultural heritage were in fact not.

11 Newspaper story

The below newspaper story was published on 16 December 2019, and appeared in the printed version of Aftenposten on 17 December 2019, pages 24-25.

https://www.aftenposten.no/viten/i/kJPkeB/kunstig-intelligens-finner-skjultekulturminner

Acknowledgements

This research was financed by the Directorate for Cultural Heritage in Norway (Riksantikvaren).

Automated detection of cultural heritage in airborne lidar data

References

Dzeroski, S. and Kokalj, Z. (2019). Machine learning, remote sensing and archaeology: tasks, tools, resources and needs. Presented at: *Artificial Intelligence, Machine Learning and Deep Learning in Archaeology*, 7-8 November 2019, Rome, Italy.

Girshick, R., Donahue, J., Darrell, T. and Malik, J., (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, Columbus, Ohio, USA, 23-28 June 2014, pp. 580-587. DOI: 10.1109/CVPR.2014.81

Girshick, R., Radosavovic, I., Gkioxari, G., Dollár, P., He, K. (2018). *Detectron*. <u>https://github.com/facebookresearch/detectron</u>

He, K., Gkioxari, G., Dollar, P. and Girshick, R. (2017). Mask R-CNN. *The IEEE International Conference on Computer Vision (ICCV)*, Venice, Italy, 22-29 Oct. 2017, pp. 2961-2969. DOI: 10.1109/ICCV.2017.322

Hesse, R. (2010). Lidar-derived local relief models – a new tool for archaeological prospection. *Archaeological Prospection* 17, pp. 67–72. DOI:10.1002/arp.374 <u>https://onlinelibrary.wiley.com/doi/abs/10.1002/arp.374</u>

Landauer, J. and Hesse, R. (2019). Machine learning for large area archaeological feature detection. Applying transfer learning to airborne lidar data. In: 24th Conference on Cultural Heritage and New Technologies, November 4-6 2019, Vienna, Austria. https://www.chnt.at/wp-content/uploads/Machine-learning-for-large-areaarchaeological-feature-detection.pdf

Kramer, I., Hare, J., and Cowley, D., (2019). Arran: a benchmark dataset for automated detection of archaeological sites on LiDAR data. Presented at: *Artificial Intelligence, Machine Learning and Deep Learning in Archaeology*, 7-8 November 2019, Rome, Italy.

Lambers, K., Verschoof-van der Vaart, W.B. and Bourgeois, Q.P.J. (2019). Integrating remote sensing, machine learning and citizen science in Dutch archaeological prospection. Remote Sensing 11, article no. 794. doi: 10/3390/rs11070794 https://www.mdpi.com/2072-4292/11/7/794/htm

Morrison, W. and Peveler, E. (2019). Beacons of the past. Visualising LiDAR on a large scale. In: 24th Conference on Cultural Heritage and New Technologies, November 4-6 2019, Vienna, Austria. <u>https://www.chnt.at/wp-content/uploads/Beacons-of-the-Past.pdf</u>

Ren, S., He, K., Girshick, R. and Sun, J. (2017). Faster R-CNN: Towards real-time object detection with region proposal networks. *IEEE Transactions on Pattern Analysis and Machine Intelligence* 39(6), pp. 1137-1149. DOI: 10.1109/TPAMI.2016.2577031

Trier, Ø.D. and Pilø, L.H. (2012). Automatic detection of pit structures in airborne laser scanning data. *Archaeological Prospection* 19 (2), pp. 103-121. DOI: 10.1002/arp.1421

Trier, Ø.D., Pilø, L.H., and Johansen, H.M. (2015). Semi-automatic mapping of cultural heritage from airborne laser scanning data. *Semata* 27, pp. 159-186. Available at: <u>http://www.usc.es/revistas/index.php/semata/article/view/2736</u>

Trier, Ø.D., Zortea, M., and Tonning, C. (2015). Automatic detection of mound structures in airborne laser scanning data. *Journal of Archaeological Science: Reports* 2 (1), pp. 69-79. doi: 10.1016/j.jasrep.2015.01.005

Trier, Ø.D., Salberg, A.-B. and Pilø, L.H. (2018). Semi-automatic mapping of charcoal kilns from airborne laser scanning data using deep learning. In: Matsumoto, M and Uleberg, E. (eds). *CAA2016: Oceans of Data. Proceedings of the 44th Conference on Computer Applications and Quantitative Methods in Archaeology.* Oslo, Norway, 30 March-3 April 2016. Oxford: Archaeopress, pp. 219-231. Available at: http://archaeopressShop/Public/download.asp?id={6A565CFE-F617-4333-9818-4C13E78B7C1B}

Trier, Ø.D., Cowley, D.C. and Waldeland, A.U. (2019). Using deep neural networks on airborne laser scanning data: Results from a case study of semi-automatic mapping of archaeological topography on Arran, Scotland. *Archaeological Prospection* 26 (2), pp. 165–175. doi: 10.1002/arp.1731

https://onlinelibrary.wiley.com/doi/abs/10.1002/arp.1731

Verschoof-van der Vaart, W. B. and Lambers, K. (2019). Learning to look at LiDAR: The use of R-CNN in the automated detection of archaeological objects in LiDAR data from the Netherlands. *Journal of Computer Applications in Archaeology* 2(1), pp. 31–40. DOI: 10.5334/jcaa.32

