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Summary:
The National Museum of Denmark has been asked by Riksantikvaren to make an evaluation of the
effects of infiltrating water in order to improve preservation conditions at sites with organic cultural
remains. A literature survey and direct contact to people working with in situ preservation gave a
limited result and showed that there is little practical experience on the subject. Thus some
experimental work has been included in this study to investigate some of the possible effects, before
infiltration it applied full scale at archaeological sites. It has not been possible to cover all possible
effects within the frames of the study, so focus has been on organic cultural deposits, and how their
decay is effected by different water contents and water types.
Initial results from the laboratory and from ongoing monitoring at Bryggen in Bergen have
validated the benefits of an increased water content of the soil, as a high water content reduces the
oxygen supply and oxygen concentrations in the soil. Field data show that anoxic conditions occur
when the air content of the soil (i.e. the porosity minus the water content) is below 5-15% vol, but
these numbers need to be validated at other sites. An increased water content will normally decrease
the decay rate, and only under extremely dry conditions will addition of water have the opposite
effect. The effects of different types of water have been evaluated in terms of the reactivity of
different oxidants dissolved in the water: The reactivity of dissolved oxygen and nitrate is high, but
their concentration in most water is limited, and they are expected to have a limited effect in the
unsaturated zone - field data from Bryggen thus shows that the oxygen dissolved in rain water
normally is reduced before it reaches the cultural layers. The reactivity of dissolved sulphate is
lower, but the concentration can be very high for instance in seawater - thus data from the
laboratory study and from Bryggen have shown that the decay rate in sulphate rich deposits can be
significantly higher than in sulphate free deposits. The effect from infiltration on soil temperature is
expected to be limited, at least if rainwater is used in the infiltration.
Overall the study has validated the presumption that "any water is better than no water" and
"stagnant water is better than flowing water", but it must be emphasized that the effect from
infiltration on leaching or washing out of the deposits has not yet been evaluated. Some suggestions
for further studies are given.
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Introduction
Drainageis one of the greatestthreatsto the preservationof organicarchaeologicallayers: it

increasesthe supplyof oxygeninto the soil considerably,which increasesthe decayrates of the

organicmaterial. There are numerousexamplesof archaeologicallayersbeing degradeddue to

drainageof previouswater saturatedsoil layers, for instanceat StarCarr in the UK (Borehamet al.

2011),and Åmosenin Denmark(Fischeret al. 2004;Matthiesenand Jensen2005).The best known

examplein Norwayis probablyBryggenin Bergenwherethe buildingsand soil surfacelocallyis

settlingby 6-8 mm/yeardue to the decayof organicarchaeologicallayers (Jensen2007).

Onemethodto preventthe decayof the organicarchaeologicallayerscouldbe to infiltratewater

into the layersand therebyincreasethe soilwater content.There are a few scientificpapers

describinghow active infiltration(re-watering)has beenused as a method to preventdecay

processesat archaeologicallocations:At the RoseTheaterin Londona leakypipe systemhas been

used to keepburiedarchaeologicalremainswet since 1989(Corfield2004),and at the SweetTrack

in SommersetLevels,UK, a pumpingsystemhas beenused since 1983to retaina high groundwater

level locally(Brunninget al. 2000).Directcontactto Britishand Dutchcolleagues(JimWilliams

and Jane SidellfromEnglishHeritage,Ian PanterfromYorkArchaeologicalTrust,Mike Corfield

formerchief scientistfrom EnglishHeritage,and HansHuismanfromNetherlandsCultural

HeritageAgency)didn't providefurtherexamplesof active infiltrationat archaeologicalsites.At

Ribe in Denmarkleakypipes wereused in the rainwatersewersystemin the 1990'sand 2000's to

increaseinfiltrationinto the culturaldeposits(RibeAmt and RibeKommune2005)however,during

the latestyears thispracticehas been changedas therewas a fear that the leakypipes could serveas

drains,rather than infiltrationbasins (Grønning2011).Activeinfiltrationusingpumpshas been

used for instancein Copenhagenas a methodto protectwoodenfoundationpiles temporarilyduring

constructionprojects(Stæhrand Lund2003)or permanently(for instanceat Eigtvedspakhusat

Christianshavn—Brendstrup2010).A largeEuropeanstudyon woodenpiles (BacPoles)showed

how softrotfungi attackedthe piles if oxygenwas available.Underanoxicconditionsbacteria

causedsomewooddecay—this is normallya much slowerprocessthan decayby fungi,but the

studyindicatedthat a high watermovementthroughthe soil could increasethe bacterialdecayrate

(Huismanet al. 2008).This was corroboratedin a microcosmstudyin the laboratory,showingthat

both the water flowand the contentof nitrateand sulphatecouldhave an effecton the decayrate—

surprisinglythe additionof nitrate,sulphateand glucoseseemedto reduce the decayof woodand

kapok,at leaston a shortertime scale (Kretschmaret al. 2008).

3



Riksantikvaren in Norway currently consider using active or passive infiltration to protect cultural

layers at Bryggen and at several other locations in Norway. However, even though systems for

active or passive infiltration are already used at a few archaeological sites in other countries,

information on the exact effects of infiltration is very scarce and the risk of negative effects has not

been investigated —or at least not published. Several questions need to be addressed before

infiltration is used as a standard method to protect cultural deposits throughout Norway:

What is the minimum soil water content needed to limit the availability of oxygen —is it

possible to establish a water content threshold for anoxic conditions?

Does the soil water content influence the decay in other ways —is the decay for instance

limited in very dry soils?

What type of water should be used —does for instance the amount of dissolved oxygen,

nitrate or sulphate influence decay rates?

Are there other effects that should be considered —for instance effects from infiltration on

soil temperature or leaching of cultural layers?

The National Museum of Denmark has been contracted by Riksantikvaren to make a preliminary

investigation of these questions. It was requested that material from Bryggen in Bergen should be

used in the investigations.

Background

The microbial decomposition of organic matter is the dominant process causing decay of organic

archaeological layers. Soil organisms oxidize soil organic matter to inorganic forms primarily to

extract energy for growth. Microbial decomposition rates depend strongly on the quality of the

organic matter and on different environmental controls, of which water, oxygen availability, and

temperature are among the most important (Schuur et al. 2008).
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Figure 1: Different supply channels for oxygen and other oxidants that may be used by microorganisms to decay

organic archaeological material.

Oxygen is the most reactive and powerful oxidant and some decay processes such as fungal attack

will only take place when oxygen is available (Figure 1). In unsaturated soils oxygen is supplied

through the air filled pores by diffusion, advection or pressure gradients. Oxygen is also soluble in

water and may be supplied by water flowing through the soil, or by diffusion through still water.

However, these supply channels are less effective as the oxygen content in water is app. 25 times

lower than in air and the diffusion of oxygen through water is more than 1000 times slower than in

air. Thereby the preservation of archaeological material becomes highly dependent on the soil water

content - the oxygen supply is greatly enhanced when the soil dries and vice versa when the soil

gets wetter. Consequently, infiltration of water into unsaturated archaeological layers could be an

effective method to increase the soil water content, reduce the oxygen supply and thereby reduce

the decay of the archaeological materials.

On the other hand, the water content in the soil may itself influence the reactivity of the organic

material and possibly an increased water content could increase the decay rate in very dry soils.

Furthermore, the infiltration water may contain some oxygen along with other dissolved oxidants

such as nitrate and sulphate that may contribute to the decay of organic material. Finally, an

increased water flow through the soil layers could change the soil temperature and increase the

leaching of soil constituents that could affect both the archaeology and the water environment.

It is necessary to evaluate and compare these possible positive and negative effects, before any

general recommendations regarding infiltration may be given.
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Methodology

Study site and data used

At Bryggen in Bergen the buildings and the soil surface is settling at a considerable rate as a

consequence of a lowered groundwater table. In September 2006 a 2Y2-metre deep testpit was made

at the northern end of Bredsgården in order to assess the state of preservation of the deposits in the

upper unsaturated part of the soil (Dunlop 2007; Matthiesen 2007b). The testpit was re-opened in

October 2010 in order to install supplementary monitoring equipment (Matthiesen and Hollesen

2011). Environmental monitoring data from the testpit are used in this report to investigate how the

soil water content influences the availability of oxygen within the soil (Matthiesen and Hollesen

2012). Moreover, to investigate how infiltration of water influences the soil water and oxygen

content precipitation data from the metrological station Florida in Bergen is used (available from

.met.no). Finally soil samples from the testpit are used along with soil samples from the newly

constructed dipwell MB39 (Dunlop 2011) (Table 1). The samples 1-4 are used to investigate how

changes in soil water content affect the decomposition of the organic material. In addition, the

samples 1, 3 and 5 are used to investigate if water containing dissolved oxygen, nitrate and sulphate

could cause decay of the organic material. Samples 1-3 has previously been used to study the

influence from temperature on decay rate (Hollesen and Matthiesen 2011)
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(% vol)

Soil sam le Descri tion wei ht)




1:Testpit layer 8 (3.1 m asl) Organic-rich sandy layer with timber




48-63

2:Testit layer 9 (2.7 m as1)
Alternating layers of lime, charcoal
and stone

6 71 66-68

3:Testpit layer 14 (2.1 m asl) Organic layer, with timbers 35 80 66-68

4:Drilling MB-39-01 (2.1 m asl) Disturbed fire layer 38




5: Drilling MB-39-10 (-2.15 m
as1)

Sand with a few wood chips, weak
I-I2Ssmell

34




Table 1: The samples in this study, all from Bryggen in Bergen. Each individual soil layer has been thoroughly
described by archaeologist Rory Dunlop (Dunlop 2007; Dunlop 2011) using the Norwegian Standard layer recording
system. An ultra-short description of the layers is given in the second column. Measurements of loss on ignition and
porosity are described in Matthiesen and Hollesen (2011) . The water content for samples 1-3 is given as an interval,
reflecting the variations measured in situ in the period October 2010 to November 2011 (Matthiesen and Hollesen
2012).

Laboratory experiments

The decomposition rate of organic materials is difficult to measure real-time in the field and

therefore it is most often measured under controlled conditions in the laboratory. The two most

common methods used to study decomposition rates under oxic conditions are measurements of
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either CO, production or 02 consumption in soil samples based on the assumption that Organic

material + CO,. The oxygen consumption method is used in this study (Matthiesen 2007a).

For decomposition under anoxic conditions, this study focusses on nitrate and sulphate reduction,

where bacteria oxidize organic material by reducing nitrate (NO3-) to nitrogen gas (1\12)and sulphate

(S042-) to sulphide (H,S). Here there exist a range of methods to measure the nitrate and sulphate

reduction rate, including methods using radioactive tracers, but we have used a relatively simple

setup where nitrate and sulphate is added to the system and their concentrations are followed over

time —a similar setup has earlier been used to measure sulphate reduction rate for samples from the

harbour front of Bryggen (Bioforsk 2008).

The oxygen consumption was measured in the collected samples (Table 1) at different water

contents to investigate the sensitivity of the decay processes to changes in soil water content.

Measurements were made at 15 °C. The first series of measurements were made at in-situ water

contents on 8-11 replicates of soil samples 1-4. The samples were transferred to 4.0 ml vials and

flushed with atmospheric air before the vials were closed with airtight lids. The oxygen

consumption was subsequently measured by monitoring the decrease of headspace 02

concentrations a week by using oxygen optodes from PreSens (‘‘ \\.presens.de). After the first

series of measurements the replicates were dried at 15 'C until app. 30 vol% of the soil water

remained. Then different amounts of water were added to the replicates and after 48 hours of

incubation a new series of measurements was initiated. One replicate was oven dried at 50 °C to

remove all water, in order to get a zero reference, and in another replicate the soil was covered by

water in order to get a "waterlogged" or 100% reference. The measurement period varied between a

few days and up to a month, depending on the reactivity of the soil.

The oxygen consumption measurements were used to calculate the Oxygen consumption rate:

avygen consumption rate = V-(1402 41) m.100 (1)

where V is the volume of air inside the vial (cm3), C is the initial concentration of oxygen (mg/cm3),

402/At is the decrease in oxygen saturation over time (%sat/day —taken as the slope of the curves

in Figure 6), m is the dry weight of the soil sample (g) and 100 (%) is a scale factor.

The nitrate and sulphate reduction was measured on samples 1, 3 and 5 at room temperature (23

°C). Approximately 30 g of soil with in situ water content was placed in 133 mL vials with oxygen

sensors and airtight lids. Initially the oxygen consumption in air was measured as described above.

After 1 day, the vials were filled to the rim with demineralised water that had been bubbled with
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atmospheric air. The vials were closed and the oxygen consumption in water was measured. After

one or a few days the water in the vials was (close to) anoxic, and nitrate was added to a

concentration of approximately 20 ppm. The decrease in nitrate concentration was followed over

time, by taking 5 mL samples from the vials at intervals and replacing by demineralised water.

After the nitrate was consumed, sulphate was added to a concentration of approximately 40 ppm

(plus the natural sulphate concentration of the samples). Again 5 mL samples were taken at

intervals and replaced by demineralised water. All samples were analysed by lon Chromatography

(IC) giving the content of chloride, nitrate and sulphate.

The measured concentrations were compensated for dilution effects from sampling, and used to

calculate the nitrate and sulphate reduction rates:

Nitrate/sulphate reduction rate = r4c74i)•24 / m (1)

where V is the volume of water inside the vial (L), AC/At is the decrease in nitrate or sulphate

concentration over time (ppm/h) —taken as the slope of the curves in Figure 9), m is the dry weight

of the soil sample (g) and 24 (h/day) is a scale factor.

Results and Discussion

Infifiration, water content and diffilsion oforygen through unsaturated soil

Understanding the coupling between precipitation, infiltration, soil water content and soil oxygen

content is important in order to evaluate the possible effect of infiltrating water into the soil. This

coupling is best studied in the field, and a good set of data is available from the monitoring at

Bryggen in Bergen. The data are described in details in Matthiesen and Hollesen (2012) but some

important results are repeated here:

Not surprisingly, the data from Bryggen shows that there is a clear connection between the

precipitation and the water content of the different soil layers (Figure 2). For some layers

precipitation results in an immediate increase in the water content (e.g. at 2.37 and 3.09 m as1)

whereas in other layers the response is slower (e.g. at 2.77 m as1). This is probably due to

differences in the physical properties of the different layers - coarse grained soil material shows a

faster response than fine grained material. The data also shows a tendency of decreasing water

content in the different soil layers during the period 2006-2010 (Table 2). To some extent this

decrease may be a long term effect of drainage in the area but natural variations in the precipitation

also seem to play an important role. As seen in Table 2 the yearly mean soil water content is lowest

in years with low yearly precipitation rates. The precipitation rates furthermore vary greatly from
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year to year (up to 1400 mm or 1400I/m2) which could indicate that great amounts of water may

have to be re-infiltrated to the soil to keep it wet during dry years. However, as only a minor part of

the precipitation infiltrates into the ground due to the surface pavement a more thorough

investigation of the water balance is needed to give a more accurate estimate of the amounts of

water needed to keep the soil wet.

Excavation
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Figure 2: Results from water content probes installed at different depths in the cultural laers at Nordre Bredsgarden in
Bergen (Matthiesen and Hollesen 2012). The soil porosity, as measured in ring samples in the laboratory, is shown with
horizontal lines to the left (on y-axis). No ring sample could be taken from the soil layer at 3.60 m asl. Precipitation data
from met.no are shown as black columns (station Bergen, Florida).




Precipitation

mm/year

Water content, yearly average (%vol)

3.27 m asi2.81 m asi2.43 m ast1.98 m asi

2007 3025 52 66 53 >80

2008 2513 49 65 43 70

2009 2093 46 63 30 67

2010 1626 39 64 39 71

Table 2: Yearly precipitation rates for the period 2007-2010 measured at Florida weather station in Bergen. The
average water contents measured in the same period at the different soil layers are shown for comparison.

The data from Bryggen gives a good picture of how changes in soil water content influences the

oxygen content in the soil. Figure 3 shows how the water content at 3.09 m asl slowly decreases

during two dry periods from 17/11-11/12 2010 and 19/4-2/5 2011. In both periods the oxygen

concentration increases when the water content drops to a level of approximately 48-50% which

corresponds to an air content > 12% (calculated as porosity minus water content). At 2.3 m asl

oxygen appears when the water content is below 32% vol, which corresponds to an air content >

Moisture

(%vol)

Precipitation

(mm)
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11%. Overall, it is estimated that oxygen is mainly present in these soil layers when the air filled

volume exceeds approximately 5-15% vol.
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Figure 3: Examples of the relationship between water content (measured at 3.09 m as1) and oxygen concentration
(measured at the two nearest sensors, at 3.06 and 3.21 m as1) during and after two dry periods. Monitoring data from
Bergen (Matthiesen and Hollesen 2012).

In periods with more precipitation the water content increases and the oxygen disappears from the

soil. Figure 4 shows some more examples from the monitoring in Bergen: To the left is

demonstrated how the water content at 3.09 m as1 increases abruptly during heavy rain, and the

oxygen concentration at 3.21 m asldrops at the same time. This is most notably in the period 29/6-

1/7 2011 where there was 100 mm precipitation in 4 days - here the conditions became completely

anoxic around the oxygen sensor. As for the conditions in the uppermost soil layers, Figure 4 (right)

shows the results from a water content sensor and oxygen sensor at 3.92 m as1 just beneath the soil

surface (which is covered by cobblestone at this site) —also here the oxygen concentration

decreases during periods with heavy rain.
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Figure 4: Examples of the correlation between water content and oxygen concentration at different depths,
measured during two wet periods. Monitoring data from Bergen (Matthiesen and Hollesen 2012).

The same picture is observed in the laboratory (Figure 5), where the oxygen concentration is

measured in a closed vial filled with air (to the left) and with water (to the right). When water is

added (at time h=0) the oxygen saturation decreases rapidly and after 12 hours the first samples are

anoxic. This is due to the fact that the amount of oxygen in water is much lower than the amount of

oxygen in air.

In air In water

Oxygen

(%sat)

120

100

80

60

40

20

la

3a

	 3b

5a

5b
-25 0 25

Time (h)

Figure 5: oxygen concentration measured in a closed vial with soil from sample 1, 3 and 5. At time 0 the vial is opened,

filled to the rim with water (in equilibrium with atmospheric air), and closed again.

Overall, this confirms the expected benefits from infiltration of water in the unsaturated zone. It is

too early to say exactly how wet the soil should be to keep the soil anoxic - the first data from
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Bergen indicate that the air content should be lower than approximately 5-15% vol to retain anoxic

conditions, but more monitoring at Bryggen and other sites is necessary to confirm this.

Infiltration, water content and reactivity of organic material

Figure 6 shows an example of the first series of oxygen consumption measurements that were made

at in-situ water contents on 8-11 replicates of soil samples 1-4. The oxygen concentration in the

vials decreased by approximately one fourth in three days. Overall, the samples showed a good

reproducibility and the oxygen concentration decreased (almost) linearly over time, indicating

constant oxygen consumption during the experiment. The measured rates for sample 1-3 (Table 3)

are in good agreement with previous measurements made by Hollesen and Matthiesen (2011)

showing rates of 0.005, 0.004 and 0.033 mg 02/g wet soil/day for the three layers respectively.

Soil sample Oxygen consumption rate
(mg 02/g dry soil/day)

Oxygen consumption rate
(mg 02/g wet soil/day)

1:Testpit layer 8 (3.1 m as1) 0,010 ± 0,002 0,005 ± 0,001

2:Testpit layer 9 (2.7 m as1) 0,011 ± 0,003 0,005 ± 0,001

3:Testpit layer 14 (2.1 m as1) 0,086 ± 0,006 0,038 ± 0,003

4:Drilling MB-39-0I (2.1 m as1) 0,115 ± 0,024 0,061 ± 0,009

Table 3: Reactivity of soil samples from the different soil layers. The reactivity is measured as the oxygen consumption
at 15 °C and in-situ water content. The rate is given both relative to the dry weight of the soil (middle column) and
relative to the wet weight at in situ water content (right column).

130

Sample 3 (layer 14)
120

--- 110

100

90

80

70

2 3
Days

Repl. I —Repl. 2 Repl. 3 	 Repl. 4 Repl. 5 Repl. 6

Repl. 7 Repl. 8 Repl. 9 Repl. 10 Repl. 11

Figure 6: Example of oxygen consumption measured at in-situ water content at 15°C in 11 replicates from soil layer 14
(sample 3).

12



Figure 7 and 8 shows the oxygen consumption rates at different water contents for all of the

investigated soil samples. There is a great difference in the overall rate of oxygen consumption

between the two upper layers of the test-pit (sample 1 and 2) and the deeper laying layers (sample 3

and 4) with the deeper layers consuming oxygen up to 30 times faster.
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Figure 7: Oxygen consumption rates measured at different water contents in samples 1-4. The red triangle on the x-axis
shows the porosity of the sample, i.e. the sample is saturated for water contents above this value. A water content of
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Figure 8: The data from Figure 4 combined to one figure, emphasizing the difference in reactivity for the 4 samples.
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The data shows that there is an influence from the water content on the reactivity of the soil: For

very dry samples (oven dried) the reactivity is low, it increases when the soil is wet, and then

decreases again when the soil gets very wet (saturated) and even more when the soil is

flooded/waterlogged. The highest reactivity has been measured at water contents between 30 and

60% vol. In practical terms the decrease in reactivity for the saturated or flooded soil is a positive

effect of infiltration, i.e. an increased water content of the soil not only decreases the oxygen supply

as described above, it actually may also decrease the reactivity of the soil. At the other end of the

scale the samples with 25-30% vol have been air dried for several days and the reactivity is still

relatively high. The samples with 0% water have been oven dried at 50 °C and here the reactivity is

very low, as bacterial decay is hampered due to lack of water. Thus at extremely dry sites, as for

instance in desserts, the archaeological material may be preserved due to lack of water, and at such

places the addition of water may actually increase the decay. It will require further studies to

document if this has any practical implications in Norway, i.e. if there are any sites (for instance

under heated buildings or church floors) where the decay is currently limited by the lack of water.

Infiltration and supply of dissolved oxidants

In relation to infiltration of water it has been discussed to which extent oxygen or other oxidants

(nitrate, sulphate) dissolved in the water could cause decay of the cultural layers. This will depend

on the amount of water added, the concentration of dissolved species in it, and the reactivity of the

different oxidants.

As for the reactivity of different oxidants it is a general picture that oxygen is the most reactive,

followed by nitrate, manganese oxides, iron oxides, and sulphate (e.g. Froelich et al. 1979).

However, the exact decay rates in cultural deposits are not known. A preliminary study has been

made in the laboratory, trying to quantify the decay of samples 1, 3 and 5 under different conditions

that may occur in the soil depending on infiltration. Their consumption of oxygen under both

unsaturated and waterlogged conditions are shown in Figure 5 and their consumption of nitrate and

sulphate are shown in Figure 9. Oxidation by manganese and iron oxides are not included in the

study, as they are immobile and will not be supplied by infiltrating water —however, there may be a

considerable pool present in the soil that may contribute to microbial decay of organic material after

re-saturation of the deposits, and thus postpone the positive effects for a period.
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Figure 9: Measurements of nitrate (upper) and sulphate (lower) concentrations over time. Nitrate is added to the

vials at time 0 h and sulphate is added at 400 h.

Basedon the decreasingoxygen,nitrateand sulphateconcentrationsit is possibleto calculatea

consumptionrate (Table4)

la 1b 3a 3b 5a 5b

Oxygen, in air mg/g dry soil/day

Oxygen, in water mg/g dry soil/day

Nitrate, in water mg/g dry soil/day

Sulfate, in water mg/g dry soil/day

0.075 0.096 0.246 0.198 0.335 0.329

0.065 0.059 0.116 0.062 0.109 0.091

0.084 0.076 0.091 0.080 0.041 0.202

0.008 0.010 0.022 0.016 <0.001 0.006

Table 4: consumption rate for different oxidants. All are given relative to the dry weight of the soil. All measurements

have been made at room temperature (23 °C).

In order to comparethe differentoxidantsin Table4 on an equalbasis, the numbersare recalculated

to the amountof organicmaterial(representedas CFI20)theymay oxidise(Figure 10).
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Figure 10: Comparison of decay rates for organic material in soil samples frorn Bryggen, measured under different

conditions in the lahoratory at room temperature (23°C). "Oxygen in air- represents drained conditions. whereas

"Ox uen/nitrate/sulphate in water- represents waterlogged conditions with unlimited supply of the three different

oxidants.

Figure 10 confirms that oxygen is the most reactive oxidant, and it is noted that the decay rate "in

air- (i.e. under drained conditions) is higher than in all the other setups, i.e. "any water is better than

no ater-. Still, the decay rate shown for both dissolved oxygen and nitrate is significant and their

effect in situ will depend on the amounts that are added. The sulphate reduction rates found here are

considerably lower, but still correspond to a decay rate of 0.003-0.013 mg organic material pr. g dry

soil per day, which would normally be considered poor or lousy preservation conditions (PresCon

1-2). These experiments have been made at 23 °C which may give an unrealistic high decay rate,

but on the other hand it is possible that the rate would increase over time as a larger population of

sulphate reducing bacteria becomes established in the soil (the bacteria are strictly anaerobic and

during the experiments under oxic conditions they have only survived in small anoxic parts of the

soil). The sulphate reduction measured is on the same level as was found by (Bioforsk 2008) who

measured sulphate reduction in 8 samples from the harbour front of Bryggen and found a

consumption rate corresponding to 0.003-0.015 mg organic material pr. g dry soil per day at 10 °C.

For comparison, the decay rate in the central part of Bryggen, where there is a very slow water

exchange and the decay is dominated by methanogenesis, has been estimated to only 0.0001 mg

organic material/g/day (Matthiesen 2009) i.e. 1 or 2 orders of magnitude lower.

Apart from the reactivity, the supply of the different oxidants is extremely important —if a given

oxidant is only present in a limited concentration (Figure 11) or for a limited period it may be less

important:
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As for oxygen in air, the concentration in atmospheric air is 289 mg/L (at 10 °C) and its presence

has already been discussed above based on the field measurements from Bergen. As for oxygen in

water, the maximum concentration of dissolved oxygen is 11 mg/L (at 10 °C) when water is in

equilibrium with atmospheric air. Figure 4 showed some examples of oxygen measurements in the

unsaturated zone on Bryggen in wet periods. This showed a decrease in oxygen concentration in the

unsaturated zone during heavy rain, so the increase in soil moisture (and decrease in oxygen

diffusion rate) has a greater effect on the oxygen supply, than the small amount of oxygen dissolved

in the rain. It indicates that the oxygen dissolved in rainwater is reduced or used up before it reaches

even the uppermost oxygen sensors at this site. This is also indicated by analysis of groundwater

from dipwells on Bryggen showing anoxic conditions in the saturated zone for the large majority of

dipwells (Matthiesen 2005; Matthiesen 2008). An exception is a dipwell called MB5, next to the

sheet piling on Bryggen: here it has been shown that the normal anoxic conditions become oxic

during heavy rain, indicating that the water flow around this dipwell is so fast that the dissolved

oxygen isn't used up during its transport through the soil (Matthiesen, 2005). Under such conditions

the decay rates given in Figure 10 as "oxygen in water" may be relevant in the saturated zone.

As for nitrate, information about the concentration in rainwater measured at 6 different stations in

Norway during 2009 is given in (Hjellbrekke and Fjæraa 2011). Extreme values of up to 30 mg

NO3/L have been measured on a few occasions, but the yearly average concentration varies between

0.2 and 2 mg NO3/L at the 6 stations. At this stage it is therefore estimated that the supply of nitrate

through rain is lower than the supply of dissolved oxygen. Nitrate hasn't been measured in soil

water from the unsaturated zone, but concentrations up to 6 mg/L has been measured in the most

dynamic dipwells on Bryggen (Matthiesen, forthcoming). This could indicate that there are some

additional nitrate sources in the area, for instance from de-icing salts or road runoff.
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As for sulphate the yearly average concentration measured in rain in Norway in 2009 varies from

0.4 to 1.3 mg SO4/L (Hjellbrekke and Fjæraa 2011). However, the sulphate supply is highly

dependent on the input of seawater, where the concentration is as high as 2700 mg/L (Figure 11),

i.e. even a small input of seawater (from aerosol, groundwater flow, or active infiltration of

seawater) will greatly enhance the input. Furthermore, there may be a production of sulphate in the

soil, if reduced sulphur species are oxidised. Most dipwells on Bryggen show a sulphate

concentration between 1 and 10 mg/L (Matthiesen forthcoming), but in the drained area some

dipwells contain 10-100 mg/L (probably due to oxidation of reduced sulphur), and at the harbour

front up to 1000 mg/L has been found (due to seawater intrusion). This means that even if the

reactivity of sulphate may be 10 times lower than the reactivity for nitrate and oxygen, it cannot be

recommended to use for instance seawater for infiltration as the concentration of sulphate may be

more than 100 times higher than the concentration of the other dissolved oxidants.

To sum up, the potential damage from dissolved oxidants in the infiltration water depends on both

the composition of the water and the amount flowing through the deposits. If the flow rate is very

low (stagnant conditions) the different oxidants will be used up over time, after which the decay

rate becomes very low - in other words "stagnant conditions is better than a large water exchange-.

Before initiating infiltration it is thus recommended that the water quality and the flow rate is

investigated, and compared to the reactivities presented in Figure 10.

Other effeets nfroni infiltration

Infiltration of water may in theory influence the deposits in numerous ways, but it has not been

possible to evaluate all of them within the frame of this report. One effect we were asked to

consider was the possible influence on soil temperature. Again data from Bryggen in Bergen is used

in the evaluation:
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Figure 12: Temperature measurements at different depths in the unsaturated and saturated zone at Nordre Bredsgården

in Bergen (data from Matthiesen and Hollesen 2012). In the unsaturated zone temperature sensors were placed directly

in the soil, and in the saturated zone a data logger was placed in dipwell MB21. Air temperature and precipitation is

also shown. Soil surface is at 4.14 m as1 and groundwater level varied between 1.0 and 2.2 m as1 in the period shown.

Figure 12 shows how precipitation influences the soil and groundwater temperature. The most

marked effect is seen in the groundwater (dipwell MB21) for instance in the beginning of July,

where the groundwater temperature increases abruptly by 2 °C due to rain. In the unsaturated zone

no such effect from the precipitation is seen —here the soil temperature just follows the trend in air

temperature with some delay. The temperature of the precipitation has not been measured directly,

but it is expected to follow the air temperature, i.e. during winter the precipitation is colder than the

soil, and during summer it is warmer than the soil. A temperature increase of 2 °C may increase the

decay rate by 15-20% (Hollesen and Matthiesen 2011) which is considered of less importance

compared to the benefits from the rain on soil moisture. Still it cannot be recommended to use very

warm water for infiltration.

Within the frames of the present project, it has not been possible to evaluate the effect from

infiltration on leaching ("vs,ashing our) of the deposits or artefacts, but it is recommended to initiate

such a study. Furthermore, in this report the focus has solely been on the preservation of organic

remains. At sites containing for instance metals or bones some additional effects need to be

evaluated, as for instance the effect of chloride on metal corrosion.

Conclusions and future work

In order to sum up:
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The effect from infiltration on soil moisture and oxygen supply has been studied using

monitoring data from Bryggen, where it was demonstrated how the oxygen concentration in

the soil increased during dry periods (Figure 3) and decreased during wet periods (Figure 4)

A first estimate has been made of "how wet is wet enough- to keep the soil anoxic —it

depends on the soil type, but monitoring data fmm Bryggen showed anoxic conditions when

the air content of the soil (i.e. the soil porosity minus the water content) was lower than 5-

15% vol

Under oxic conditions the highest decay rates were found at -medium- water contents

between 30 and 60% vol for the samples investigated. The rates were lower under saturated

conditions and even lower under flooded conditions (Figure 8)

Under very dry conditions (oven dried samples) the decay was limited by lack of water

(Figure 8), but it requires further studies to see if this has any practical implication in

Norway, were the soil is normally humid to wet.

The effect of dissolved oxygen, nitrate and sulphate in the infiltration water has been

evaluated, showing that the decay will depend on both the amount and type of water:

As for dissolved oxygen, the reactivity is high (Figure 10) but the concentration low (Figure

11). Data from the unsaturated zone in Bryggen shows that oxygen dissolved in rain hardly

reaches the cultural layers and even during heavy rain the oxygen concentration in the soil

decreases rather than increases (Figure 4). However, in the saturated zone there is one

dipwell with a very high water exchange (MB5) where oxygen-rich water actually reaches

the waterlogged deposits during heavy rain (Matthiesen 2005)

As for nitrate the reactivity is high (Figure 10) but the concentration low (Figure 11), and it

is expected to follow the pattern seen for oxygen

As for sulphate, the reactivity is fairly low, but the concentrations can be very high (Figure

11). The decay rate measured for soil samples in a sulphate rich environment (Figure 10)

was 1-2 orders of magnitude higher than what is found in the most stagnant areas on

Bryggen.

The effect from infiltration on soil temperature is estimated to be limited (Figure 12) unless

very warm or cold water is used

Overall. this investigation has confirmed the rules of thumb that -any water is better than no

water- and -stagnant water is better than a large water exchange-

The effects on leaching and on inorganic materials have not been addressed in this study.

Future work should include

Evaluation of typical infiltration rates —how much water is expected to be used?
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Evaluation of the composition of specific water types that may be used for infiltration, such

as for instance road run-off or roof run-off.

Further investigation of the correlation between water content and oxygen penetration: how

wet should the soil be to keep the conditions anoxic

Investigation of leaching —will the cultural deposits and artefacts be "washed out- by

infiltration?

Evaluation of the effect on other types of archaeological material, such as for instance metal

or bones
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